答案:2.C 解析:设圆心为$O$,过点$A$作$\odot O$的切线,切点为$C$,连接$OB$,$OC$,延长$BO$交直线$AC$于点$D$,则$OC⊥ AD$,所以$\angle OCD = 90^{\circ}$.因为$OB⊥ AB$,所以$\angle ABD = 90^{\circ}$,所以$\angle OCD = \angle ABD$.又$\angle ODC = \angle ADB$,所以$\triangle OCD∼\triangle ABD$,所以$\frac{OC}{AB}=\frac{CD}{BD}$,所以$\frac{CD}{OC}=\frac{BD}{AB}$.因为竖直立在地面上长为$1m$的竹竿的影子长为$2m$,所以$\frac{BD}{AB}=\frac{1}{2}$,所以$\frac{CD}{OC}=\frac{1}{2}$.设球的半径为$r m$,则$OB = OC = r m$,所以$CD = \frac{1}{2}r m$,所以$OD = \sqrt{OC^{2}+CD^{2}}=\frac{\sqrt{5}}{2}r m$,所以$BD = OB + OD = \frac{2 + \sqrt{5}}{2}r m$.因为$AB = 10m$,所以$BD = 5m$,所以$\frac{2 + \sqrt{5}}{2}r = 5$,解得$r = 10(\sqrt{5}-2)\approx2.4$.故球的半径约为$2.4m$.
