零五网 全部参考答案 亮点给力提优课时作业本答案 2026年亮点给力提优课时作业本八年级数学下册苏科版 第36页解析答案
8. (3分)计算$(- m^{2})^{3} · \frac{2}{m}$的结果是(
C
)

A.$- 2m^{4}$
B.$2m^{4}$
C.$- 2m^{5}$
D.$2m^{5}$
答案:8. C
解析:
$(-m^{2})^{3}·\frac{2}{m}=-m^{6}·\frac{2}{m}=-2m^{5}$,结果为$-2m^{5}$,答案选C。
9. (3分)计算$\frac{y}{x^{3}} · ( - \frac{x^{2}}{2y})^{3}$的结果是
$ - \frac {x^{3}}{8y^{2}}$
.
答案:9. $- \frac {x^{3}}{8y^{2}}$
解析:
$\frac{y}{x^{3}} · ( - \frac{x^{2}}{2y})^{3}$
$=\frac{y}{x^{3}} · ( -\frac{x^{6}}{8y^{3}})$
$=-\frac{y·x^{6}}{x^{3}·8y^{3}}$
$=-\frac{x^{3}}{8y^{2}}$
10. (6分)计算:
(1)$\frac{2y}{3x} · ( - \frac{3x}{y})^{2} ÷ \frac{x^{3}}{y^{2}}$;
(2)$( - \frac{2a}{b})^{3} · (\frac{2b}{a})^{2} ÷ ( - \frac{b}{2a})^{2}$.
答案:10. (1)原式$=\frac {2y}{3x} · \frac {9x^{2}}{y^{2}} · \frac {y^{2}}{x^{3}} = \frac {6y}{x^{2}}$.
(2)原式$= - \frac {8a^{3}}{b^{3}} · \frac {4b^{2}}{4a^{2}} · \frac {4a^{2}}{b^{2}} = - \frac {128a^{3}}{b^{3}}$.
11. (3分)新素养 力 若$x$和$y$互为倒数,则$(x + \frac{1}{y})(2y - \frac{1}{x})$的值是(
B
)

A.1
B.2
C.3
D.4
答案:11. B
解析:
因为$x$和$y$互为倒数,所以$xy = 1$。
$\begin{aligned}&(x + \frac{1}{y})(2y - \frac{1}{x})\\=&x · 2y - x · \frac{1}{x} + \frac{1}{y} · 2y - \frac{1}{y} · \frac{1}{x}\\=&2xy - 1 + 2 - \frac{1}{xy}\\\end{aligned}$
将$xy = 1$代入上式:
$\begin{aligned}&2×1 - 1 + 2 - \frac{1}{1}\\=&2 - 1 + 2 - 1\\=&2\end{aligned}$
答案:B
12. (3分) 若化简$(\frac{b}{a + 1} - x) ÷ \frac{a^{2}b - b}{a^{2} + 2a + 1}$的结果为$\frac{a}{1 - a}$,则$x$等于(
D
)

A.$- a$
B.$- b$
C.$a$
D.$b$
答案:12. D
解析:
设$(\frac{b}{a + 1} - x) ÷ \frac{a^{2}b - b}{a^{2} + 2a + 1} = \frac{a}{1 - a}$
先化简分母$\frac{a^{2}b - b}{a^{2} + 2a + 1}$:
$\begin{aligned}\frac{a^{2}b - b}{a^{2} + 2a + 1}&=\frac{b(a^{2}-1)}{(a + 1)^{2}}\\&=\frac{b(a - 1)(a + 1)}{(a + 1)^{2}}\\&=\frac{b(a - 1)}{a + 1}\end{aligned}$
则原式可化为:
$(\frac{b}{a + 1} - x) ÷ \frac{b(a - 1)}{a + 1} = \frac{a}{1 - a}$
即:
$(\frac{b}{a + 1} - x) × \frac{a + 1}{b(a - 1)} = \frac{a}{1 - a}$
两边同时乘以$b(a - 1)$:
$(\frac{b}{a + 1} - x)(a + 1) = \frac{a}{1 - a} × b(a - 1)$
左边展开:
$b - x(a + 1)$
右边化简:
$\frac{a}{-(a - 1)} × b(a - 1) = -ab$
所以:
$b - x(a + 1) = -ab$
移项得:
$x(a + 1) = b + ab = b(1 + a)$
两边同时除以$(a + 1)$:
$x = b$
D
13. (3分)计算:$(\frac{1}{a - 2} + a) ÷ \frac{a^{2} - 1}{a^{2} - 2a} - \frac{a}{a + 1} =$
$\frac {a^{2} - 2a}{a + 1}$
.
答案:13. $\frac {a^{2} - 2a}{a + 1}$
解析:
解:原式$=(\frac{1}{a-2}+\frac{a(a-2)}{a-2})÷\frac{(a+1)(a-1)}{a(a-2)}-\frac{a}{a+1}$
$=\frac{a^2-2a+1}{a-2}·\frac{a(a-2)}{(a+1)(a-1)}-\frac{a}{a+1}$
$=\frac{(a-1)^2}{a-2}·\frac{a(a-2)}{(a+1)(a-1)}-\frac{a}{a+1}$
$=\frac{a(a-1)}{a+1}-\frac{a}{a+1}$
$=\frac{a^2 - a - a}{a+1}$
$=\frac{a^2 - 2a}{a+1}$
14. (3分)上分点一 如果$x^{2} - 3x - 6 = 0$,那么代数式$(x - \frac{9}{x}) ÷ \frac{2x + 6}{x^{2}}$的值为
3
.
答案:14. 3
解析:
$(x - \frac{9}{x}) ÷ \frac{2x + 6}{x^{2}}$
$=\frac{x^{2}-9}{x}÷\frac{2(x + 3)}{x^{2}}$
$=\frac{(x + 3)(x - 3)}{x}·\frac{x^{2}}{2(x + 3)}$
$=\frac{x(x - 3)}{2}$
$=\frac{x^{2}-3x}{2}$
因为$x^{2}-3x - 6 = 0$,所以$x^{2}-3x=6$。
则$\frac{x^{2}-3x}{2}=\frac{6}{2}=3$。
3
15. (9分)已知$\frac{3 - x}{x^{2} - 2x + 1} ÷ P = 1 + \frac{x^{2} - 2x - 1}{1 - x}$.
(1)求$P$,并将其化简;
(2)当$x = n$时,记$P$的值为$P(n)$.例如:当$x = 2$时,$P$的值为$P(2)$;当$x = 3$时,$P$的值为$P(3)$;$···$.求关于$t$的不等式$\frac{t - 2}{4} - \frac{3 - t}{2} \geq P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8)$的解集及最小整数解.
答案:15. (1)因为$\frac {3 - x}{x^{2} - 2x + 1} ÷ P = 1 + \frac {x^{2} - 2x - 1}{1 - x}$,所以$P = \frac {3 - x}{x^{2} - 2x + 1} ÷ (1 + \frac {x^{2} - 2x - 1}{1 - x}) = \frac {3 - x}{(x - 1)^{2}} ÷ \frac {1 - x + x^{2} - 2x - 1}{1 - x} = \frac {3 - x}{(x - 1)^{2}} · \frac {1 - x}{x^{2} - 3x} = \frac {1}{x(x - 1)}$.
(2)由(1),得$P = \frac {1}{x(x - 1)}$.所以$P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) = \frac {1}{2 × 1} + \frac {1}{3 × 2} + \frac {1}{4 × 3} + \frac {1}{5 × 4} + \frac {1}{6 × 5} + \frac {1}{7 × 6} + \frac {1}{8 × 7} = 1 - \frac {1}{2} + \frac {1}{2} - \frac {1}{3} + \frac {1}{3} - \frac {1}{4} + \frac {1}{4} - \frac {1}{5} + \frac {1}{5} - \frac {1}{6} + \frac {1}{6} - \frac {1}{7} + \frac {1}{7} - \frac {1}{8} = 1 - \frac {1}{8} = \frac {7}{8}$.又$\frac {t - 2}{4} \geq \frac {3 - t}{2} \geq \frac {7}{8}$,解得$t \geq \frac {23}{6}$.所以不等式的解集为$t \geq \frac {23}{6}$,且最小整数解为$t = 4$.
上一页 下一页