12. (2025·江苏南京模拟)已知分式$A = (a + 1 - \frac{3}{a - 1}) ÷ \frac{a^2 - 4a + 4}{a - 1}$.
(1)化简这个分式;
(2)把分式$A$化简结果的分子与分母同时加上$3$后得到分式$B$.问:当$a > 2$时,分式$B$的值较原来分式$A$的值是变大了还是变小了?试说明理由;
(3)若$A$的值是整数,且$a$也为整数,求出所有符合条件的$a$的值.
答案:$12.(1)A = (a+1- \frac {3} {a-1}) ÷ \frac {a^{2}-4a+4} {a-1} =$
$\frac {(a+2)(a-2)} {a-1} · \frac {a-1} {(a-2)^{2}} = \frac {a+2} {a-2}.$
(2)变小了.理由如下:由(1)及题意,得$A = \frac {a+2} {a-2},B = \frac {a+5} {a+1},$则$A - B = \frac {a+2} {a-2} - \frac {a+5} {a+1} =$
$\frac {12} {(a-2)(a+1)}.$又a>2,所以a-2>0,a+1>
0.所以A - B>0,即A>B.则分式B的值较原
来分式A的值是变小了.
(3)由(1),得$A = \frac {a+2} {a-2}.$又$A = \frac {a+2} {a-2} = 1+ \frac {4} {a-2},$且A,a均为整数,所以a-
$2= \pm 1$或$ \pm 2$或$ \pm 4,$解得a=3或a=1或a=
4或a=0或a=6或a=-2.由题意,得$a-1 \neq$
0,$a-2 \neq 0,$即$a \neq 1,$$a \neq 2.$则所有符合条件的a
的值为-2,0,3,4,6.
13. 亮点原创 已知$x^2 + 9y^2 = 6xy$,则$(\frac{1}{2x + 3y} - \frac{1}{3y - 2x}) ÷ \frac{12y}{4x^2 - 9y^2}$的值是(
C
)
A.$-1$
B.$\frac{1}{2}$
C.$1$
D.$3$
答案:13.C 解析:原式$= \frac {4x} {(2x+3y)(2x-3y)} ·$
$\frac {(2x+3y)(2x-3y)} {12y} · \frac {x} {3y}.$又$x^{2}+9y^{2}=6xy,$所
以$x^{2}-6xy+9y^{2}=0,$即$(x-3y)^{2}=0.$所以x-
3y=0,即x=3y.所以原式$= \frac {3y} {3y} =1.$
14. 亮点原创 已知$S_1 = \frac{1}{a}$,$S_2 = 1 + \frac{1}{S_1}$,$S_3 = 1 + \frac{1}{S_2}$,…,$S_{n + 1} = 1 + \frac{1}{S_n}$($n$为非零自然数).若分式$\frac{1}{a - 5}$无意义,则$S_1 · S_2 · S_3 · ··· · S_{10} =$
45
.
答案:14.45 解析:由题意,得$S_{2}=1+a,S_{3}=1+ \frac {1} {1+a} =$
$\frac {2+a} {1+a},S_{4}=1+ \frac {1+a} {2+a} = \frac {3+2a} {2+a},$所以$S_{5}= \frac {5+3a} {3+2a},$
$S_{6}= \frac {8+5a} {5+3a},S_{7}= \frac {13+8a} {8+5a},S_{8}= \frac {21+13a} {13+8a},S_{9}=$
$\frac {34+21a} {21+13a},S_{10}= \frac {55+34a} {34+21a},$即$S_{1} · S_{2} · S_{3} · ···$
$· S_{10}= \frac {1} {a} · (1+a) · \frac {2+a} {1+a} · \frac {3+2a} {2+a} · \frac {5+3a} {3+2a}$
$· \frac {8+5a} {5+3a} · \frac {13+8a} {8+5a} · \frac {21+13a} {13+8a} · \frac {34+21a} {21+13a}$
$· \frac {55+34a} {55+34a} · \frac {55+34a} {a} · \frac {1} {a-5} = \frac {1} {a-5}$无意义,所以a-5=
0,即a=5.则$S_{1} · S_{2} · S_{3} · ··· · S_{10} =$
$\frac {55+34 × 5} {5} =45.$
15. 新素养 应用意识 (2025·江苏镇江模拟)定义:若分式$M$与分式$N$的差等于它们的积,即$M - N = MN$,则称分式$N$是分式$M$的“互联分式”.如:$\frac{1}{x + 1}$与$\frac{1}{x + 2}$.因为$\frac{1}{x + 1} - \frac{1}{x + 2} = \frac{1}{(x + 1)(x + 2)}$,$\frac{1}{x + 1} · \frac{1}{x + 2} = \frac{1}{(x + 1)(x + 2)}$,所以$\frac{1}{x + 2}$是$\frac{1}{x + 1}$的“互联分式”.
(1)判断$\frac{3}{x + 2}$是否是$\frac{3}{x + 5}$的“互联分式”,并说明理由;
(2)小红在求分式$\frac{1}{x^2 + y^2}$的“互联分式”时,用以下方法:设$\frac{1}{x^2 + y^2}$的“互联分式”为$N$,则$\frac{1}{x^2 + y^2} - N = \frac{1}{x^2 + y^2} · N$.所以$(\frac{1}{x^2 + y^2} + 1)N = \frac{1}{x^2 + y^2}$,即$N = \frac{1}{x^2 + y^2 + 1}$.请你仿照小红的方法求分式$\frac{x + 2}{x + 5}$的“互联分式”;
(3)仔细观察第(1)(2)题的规律,请直接写出实数$a$,$b$的值,使$\frac{4a - 2}{6x + b}$是$\frac{4b + 2}{6x + a}$的“互联分式”.
答案:$15.(1)\frac {3} {x+2}$是$\frac {3} {x+5}$的“互联分式”.理由如下:因为
$\frac {3} {x+2} · \frac {3} {x+5} = \frac {3(x+5)-3(x+2)} {(x+2)(x+5)} = \frac {9} {(x+2)(x+5)},$所以$\frac {3} {x+2} · \frac {3} {x+5} = \frac {9} {(x+2)(x+5)},$即$\frac {3} {x+2} ·$
$\frac {3} {x+5},$即$\frac {3} {x+2}$是$\frac {3} {x+5}$的“互联分式”.
(2)设$\frac {x+2} {x+5}$的“互联分式”为M,则$\frac {x+2} {x+5} · M = \frac {x+2} {x+5},$即M =
$\frac {x+2} {2x+7}.$所以$\frac {x+2} {x+5}$的“互联分式”为$\frac {x+2} {2x+7}.$
(3)a的值为$\frac {1} {4},$b的值为$- \frac {3} {4} $解析:由题意,
得4b+2+6x+a=6x+b,4b+2=4a-2,所以
$\begin{cases} a+3b=-2, \\ a-b=1, \end{cases}$
解得$\begin{cases} a= \frac {1} {4}, \\ b= - \frac {3} {4}. \end{cases}$
则a的值为$\frac {1} {4},$b的
值为$- \frac {3} {4}.$