1. 化简$(a - 1) ÷ \frac{a}{1 - a} × \frac{a^2}{a^2 - 1}$的结果是(
B
)
A.$\frac{a^2 - a}{a + 1}$
B.$\frac{a - a^2}{a + 1}$
C.$a$
D.$-a$
答案:1.B
解析:
$(a - 1) ÷ \frac{a}{1 - a} × \frac{a^2}{a^2 - 1}$
$=(a - 1) × \frac{1 - a}{a} × \frac{a^2}{(a - 1)(a + 1)}$
$=(a - 1) × \frac{-(a - 1)}{a} × \frac{a^2}{(a - 1)(a + 1)}$
$=-\frac{(a - 1)^2}{a} × \frac{a^2}{(a - 1)(a + 1)}$
$=-\frac{a(a - 1)}{a + 1}$
$=\frac{a - a^2}{a + 1}$
结果是B。
2. 化简$(\frac{a}{a - 2} - \frac{a}{a + 2}) · \frac{4 - a^2}{a}$的结果是(
A
)
A.$-4$
B.$4$
C.$2a$
D.$-2a$
答案:2.A
解析:
解:$\begin{aligned}&(\frac{a}{a - 2} - \frac{a}{a + 2}) · \frac{4 - a^2}{a}\\=&[\frac{a(a + 2) - a(a - 2)}{(a - 2)(a + 2)}] · \frac{-(a^2 - 4)}{a}\\=&[\frac{a^2 + 2a - a^2 + 2a}{(a - 2)(a + 2)}] · \frac{-(a - 2)(a + 2)}{a}\\=&\frac{4a}{(a - 2)(a + 2)} · \frac{-(a - 2)(a + 2)}{a}\\=&-4\end{aligned}$
A
3. (2025·黑龙江绥化)计算:$1 - \frac{x - y}{x + 2y} ÷ \frac{x^2 - y^2}{x^2 + 4xy + 4y^2} =$
$- \frac {y} {x+y}$
.
答案:$3.- \frac {y} {x+y}$
解析:
$1 - \frac{x - y}{x + 2y} ÷ \frac{x^2 - y^2}{x^2 + 4xy + 4y^2}$
$=1 - \frac{x - y}{x + 2y} · \frac{(x + 2y)^2}{(x + y)(x - y)}$
$=1 - \frac{x + 2y}{x + y}$
$=\frac{x + y - (x + 2y)}{x + y}$
$=\frac{x + y - x - 2y}{x + y}$
$=-\frac{y}{x + y}$
4. (教材P139练习2变式)若$m + n = 1$,则代数式$(1 - \frac{m}{m - n}) · \frac{m^2 - n^2}{n}$的值为
-1
.
答案:4.-1
解析:
$\begin{aligned}&(1 - \frac{m}{m - n}) · \frac{m^2 - n^2}{n}\\=&(\frac{m - n}{m - n} - \frac{m}{m - n}) · \frac{(m + n)(m - n)}{n}\\=&\frac{m - n - m}{m - n} · \frac{(m + n)(m - n)}{n}\\=&\frac{-n}{m - n} · \frac{(m + n)(m - n)}{n}\\=&-(m + n)\end{aligned}$
因为$m + n = 1$,所以原式$=-1$。
-1
5. (2025·江苏徐州期末)若化简$\frac{x + k}{x^2} ÷ (1 - \frac{2}{x})$的结果为$\frac{1}{x}$,则$k$的值是
-2
.
答案:5.-2
解析:
解:原式$=\frac{x + k}{x^2} ÷ \frac{x - 2}{x}$
$=\frac{x + k}{x^2} · \frac{x}{x - 2}$
$=\frac{x + k}{x(x - 2)}$
由题意得$\frac{x + k}{x(x - 2)} = \frac{1}{x}$,两边同乘$x(x - 2)$得:
$x + k = x - 2$
解得$k = -2$
6. 计算:
(1)(2025·江苏南京期末)$(-2xy)^2 ÷ \frac{2x^2}{3y} · \frac{y}{x}$;
(2)(2025·辽宁)$\frac{1}{m + 1} ÷ \frac{m^3}{m^2 + 2m + 1} - \frac{1}{m^3}$;
(3)(2025·陕西)$(1 - \frac{1}{x + 2}) ÷ \frac{x + 1}{x^2 + 4x + 4}$.
答案:6.(1)原式$=4x^{2}y^{2} · \frac {3y} {2x^{2}} · \frac {y} {x} = \frac {6y^{4}} {x}$
(2)原式$= \frac {1} {m+1} · \frac {(m+1)^{2}} {m^{3}} = \frac {1} {m^{3}} · \frac {(m+1)^{2}} {m^{3}}($此处原图可能有误,按运算应为$= \frac{m+1}{m^3} )$
$\frac {1} {m^{3}} · \frac {(m+1)^{2}} {m^{2}}.$
(3)原式$= \frac {x+1} {x+2} · \frac {(x+2)^{2}} {x+1} =x+2.$
7. 已知$a^2 = 3$,则$\frac{2a^3}{a - 1} + \frac{a}{2(1 - a)} · 4a$的值为(
A
)
A.$6$
B.$-6$
C.$3$
D.$9$
答案:7.A
解析:
$\begin{aligned}&\frac{2a^3}{a - 1} + \frac{a}{2(1 - a)} · 4a\\=&\frac{2a^3}{a - 1} - \frac{a}{2(a - 1)} · 4a\\=&\frac{2a^3}{a - 1} - \frac{4a^2}{2(a - 1)}\\=&\frac{2a^3}{a - 1} - \frac{2a^2}{a - 1}\\=&\frac{2a^3 - 2a^2}{a - 1}\\=&\frac{2a^2(a - 1)}{a - 1}\\=&2a^2\\\end{aligned}$
因为$a^2 = 3$,所以$2a^2 = 2×3 = 6$。
A
8. 新素养
推理能力 已知$(a + \frac{3a - 4}{a - 3}) · (■ - \frac{1}{a - 2})$的某一项被污染,且化简的结果等于$a + 2$,则被污染的项应为(
B
)
A.$0$
B.$1$
C.$\frac{a - 2}{a - 3}$
D.$\frac{a - 3}{a - 2}$
答案:8.B
易错警示
解决此类问题时要写出正确的运算符号.
9. 若$3ab - 3b^2 - 2 = 0$,则代数式$(1 - \frac{2ab - b^2}{a^2}) ÷ \frac{a - b}{a^2b}$的值为
$\frac {2} {3}$
.
答案:$9.\frac {2} {3}$
解析:
$(1 - \frac{2ab - b^2}{a^2}) ÷ \frac{a - b}{a^2b}$
$=(\frac{a^2}{a^2} - \frac{2ab - b^2}{a^2}) · \frac{a^2b}{a - b}$
$=\frac{a^2 - 2ab + b^2}{a^2} · \frac{a^2b}{a - b}$
$=\frac{(a - b)^2}{a^2} · \frac{a^2b}{a - b}$
$=b(a - b)$
$=ab - b^2$
由$3ab - 3b^2 - 2 = 0$,得$3(ab - b^2) = 2$,即$ab - b^2 = \frac{2}{3}$
故代数式的值为$\frac{2}{3}$
10. 若$a$,$2$,$3$是$\triangle ABC$的三边长,且$a$为正整数,则$\frac{a}{a^2 - 4} · \frac{a + 2}{a^2 - 3a} - \frac{1}{2 - a} =$
1
.
答案:10.1
易错警示
时刻要注意分式的分母不能为0.
11. (1)(2025·重庆)先化简,再求值:$(x + 1)(3x - 1) - x(3x + 1) + \frac{x^2 - x}{x^2 + 2x + 1} ÷ (\frac{1}{x} - \frac{2}{x + 1})$,其中$x = | - 3 | + (\pi - 4)^0$;
(2)(2025·山东东营)先化简,再求值:$\frac{a^2 - 6a + 9}{a - 2} ÷ (a + 2 + \frac{5}{2 - a})$,其中$a$是使不等式$\frac{a - 1}{2} \leq 1$成立的正整数.
答案:11.(1)原式$=3x^{2}-x+3x-1-3x^{2}-x+ \frac {x(x-1)} {(x+1)^{2}} · \frac {x(x+1)} {-(x-1)} = \frac {x} {x-1} -1 - \frac {x^{2}} {x+1} = \frac {x^{2}-1-x^{2}} {x+1} - \frac {1} {x+1}.$又$x= \vert -3 \vert +(\pi -4)^{0}=4,$
所以原式$= - \frac {1} {4+1} = - \frac {1} {5}.$
(2)原式$= \frac {(a-3)^{2}} {a-2} ÷ \frac {(3-a)(3+a)} {2-a} =$
$\frac {(a-3)^{2}} {a-2} · \frac {a-2} {(a+3)(a-3)} = \frac {a-3} {a+3}.$解不等式$\frac {a-1} {2} \leq 1,$得$a \leq 3.$又a是使不等式成立的正整数,所以a=1或2或3.由题意,得$a-2 \neq 0,$$2-a \neq 0,$$a+3 \neq 0,$$a-3 \neq 0,$即$a \neq 2,$$a \neq \pm 3.$所以
a=1.所以原式$= \frac {1-3} {1+3} = - \frac {1} {2}.$