10. (2024·四川内江)已知实数$a$,$b$满足$ab = 1$,则$\dfrac{1}{a^{2} + 1} + \dfrac{1}{b^{2} + 1} =$
1
。
答案:10.1
解析:
$\begin{aligned}\frac{1}{a^{2} + 1} + \frac{1}{b^{2} + 1}&=\frac{b^{2} + 1 + a^{2} + 1}{(a^{2} + 1)(b^{2} + 1)}\\&=\frac{a^{2} + b^{2} + 2}{a^{2}b^{2} + a^{2} + b^{2} + 1}\\\because ab = 1\\\therefore a^{2}b^{2} = (ab)^{2} = 1^{2} = 1\\\therefore \mathrm{原式}&=\frac{a^{2} + b^{2} + 2}{1 + a^{2} + b^{2} + 1}\\&=\frac{a^{2} + b^{2} + 2}{a^{2} + b^{2} + 2}\\&=1\end{aligned}$
11. 已知$a + x^{2} = 2024$,$b + x^{2} = 2025$,$c + x^{2} = 2026$,且$abc = 6078$,则$\dfrac{a}{bc} + \dfrac{b}{ca} + \dfrac{c}{ab} - \dfrac{1}{a} - \dfrac{1}{b} - \dfrac{1}{c}$的值为
$\frac{1}{2026}$
。
答案:11.$\frac{1}{2026}$
解析:
由已知得:$a = 2024 - x^2$,$b = 2025 - x^2$,$c = 2026 - x^2$,则$b - a = 1$,$c - b = 1$,$c - a = 2$。
$\begin{aligned}&\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} - \frac{1}{a} - \frac{1}{b} - \frac{1}{c}\\=&\frac{a^2 + b^2 + c^2 - bc - ac - ab}{abc}\\=&\frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{2abc}\\\end{aligned}$
代入$a - b = -1$,$b - c = -1$,$c - a = 2$,$abc = 6078$:
$\begin{aligned}&\frac{(-1)^2 + (-1)^2 + 2^2}{2×6078}\\=&\frac{1 + 1 + 4}{12156}\\=&\frac{6}{12156}\\=&\frac{1}{2026}\end{aligned}$
$\frac{1}{2026}$
12. (2025·江苏常州模拟)已知$M = \dfrac{x + 1}{2}$,$N = \dfrac{2x}{x + 1}$。
(1) 当$x > 0$时,判断$M$与$N$之间的大小关系,并说明理由;
(2) 设$y = \dfrac{2}{M} + N$,若$y$为正整数,求满足条件的整数$x$的值。
答案:12.(1)M≥N。理由如下:因为$M = \frac{x + 1}{2}$,$N = \frac{2x}{x + 1}$,所以$M - N = \frac{x + 1}{2} - \frac{2x}{x + 1} = \frac{(x - 1)^2}{2(x + 1)}$。又$x > 0$,所以$2(x + 1) > 0$,$(x - 1)^2\geq0$。所以$\frac{(x - 1)^2}{2(x + 1)}\geq0$,即$M - N\geq0$。所以$M\geq N$。
(2)因为$M = \frac{x + 1}{2}$,$N = \frac{2x}{x + 1}$,所以$y = \frac{2}{M} + N = \frac{4}{x + 1} + \frac{2x}{x + 1} = \frac{2x + 4}{x + 1} = \frac{2(x + 1) + 2}{x + 1} = 2 + \frac{2}{x + 1}$。因为$y$为正整数,$x$为整数,所以$x + 1 = \pm2$或$x + 1 = 1$,解得$x = -3$或$x = 0$或$x = 1$。所以满足条件的整数$x$的值为$-3$或$0$或$1$。
13. 通过分式的学习,我们已经认识到:分式不仅能如分数般理解性质、开展运算,还与方程、不等式、函数等代数内容紧密相连。已知$2x + y - 3 = 0$,解答下列问题:
(1) 求$\dfrac{1}{4x^{2} + 4xy + y^{2}}$的值;
(2) 若$\dfrac{1 - y}{(1 - 2x)(4x + 2)} = \dfrac{A}{2x - 1} + \dfrac{B}{2x + 1}$,求$A$,$B$的值;
(3) 当$\dfrac{1 - y}{2y}$的值为正数时,$x$应满足什么条件?
答案:13.(1)原式$=\frac{1}{(2x + y)^2}$。因为$2x + y - 3 = 0$,所以$2x + y = 3$。所以原式$=\frac{1}{3^2}=\frac{1}{9}$。
(2)因为$2x + y - 3 = 0$,所以$y = 3 - 2x$。所以$\frac{1 - y}{(1 - 2x)(4x + 2)} = \frac{1 - 3 + 2x}{(1 - 2x)(4x + 2)} = \frac{2(x - 1)}{-2(2x - 1)(2x + 1)} = \frac{-x + 1}{(2x - 1)(2x + 1)}$。又$\frac{1 - y}{(1 - 2x)(4x + 2)} = \frac{A}{2x - 1} + \frac{B}{2x + 1}$,且$\frac{A}{2x - 1} + \frac{B}{2x + 1} = \frac{A(2x + 1) + B(2x - 1)}{(2x - 1)(2x + 1)} = \frac{2(A + B)x + (A - B)}{(2x - 1)(2x + 1)}$,所以$\begin{cases}2(A + B) = -1\\A - B = 1\end{cases}$,解得$\begin{cases}A = \frac{1}{4}\\B = -\frac{3}{4}\end{cases}$。
(3)由(2),得$y = 3 - 2x$。所以$\frac{1 - y}{2y} = \frac{2x - 2}{6 - 4x}$。又分式$\frac{1 - y}{2y}$的值为正数,所以$\begin{cases}2x - 2 > 0\\6 - 4x > 0\end{cases}$,或$\begin{cases}2x - 2 < 0\\6 - 4x < 0\end{cases}$,解得$1 < x < \frac{3}{2}$。则$x$应满足的条件为$1 < x < \frac{3}{2}$。
14. 若$M = \dfrac{1}{1 + x} + \dfrac{1}{1 + y}$,$N = \dfrac{x}{1 + x} + \dfrac{y}{1 + y}$,且$xy = 1$,则$M$,$N$之间的大小关系是(
C
)
A.$M > N$
B.$M < N$
C.$M = N$
D.无法比较
答案:14.C 解析:因为$xy = 1$,所以$M = \frac{1}{1 + x} + \frac{1}{1 + y} = \frac{1 + y + 1 + x}{(1 + x)(1 + y)} = \frac{2 + x + y}{1 + x + y + xy} = \frac{2 + x + y}{2 + x + y} = 1$,$N = \frac{x}{1 + x} + \frac{y}{1 + y} = \frac{x(1 + y) + y(1 + x)}{(1 + x)(1 + y)} = \frac{x + xy + y + xy}{1 + x + y + xy} = \frac{2 + x + y}{2 + x + y} = 1$。所以$M = N$。
15. 定义:若两个分式$A$与$B$满足:$|A - B| = 3$,则称$A$与$B$这两个分式互为“美妙分式”。
(1) 下列三组分式:① $\dfrac{1}{a + 1}$与$\dfrac{4}{a + 1}$;② $\dfrac{4a}{a + 1}$与$\dfrac{a - 3}{a + 1}$;③ $\dfrac{a}{2a - 1}$与$\dfrac{7a - 3}{2a - 1}$。其中互为“美妙分式”的是
②③
(填序号);
(2) 求分式$\dfrac{a}{2a + 1}$的“美妙分式”;
(3) 若分式$\dfrac{4a^{2}}{a^{2} - b^{2}}$与$\dfrac{a}{a + b}$互为“美妙分式”,且$a$,$b$均为不等于$0$的实数,求分式$\dfrac{2a^{2} - b^{2}}{ab}$的值。
答案:15.(1)②③ 解析:因为$\left|\frac{1}{a + 1}-\frac{4}{a + 1}\right|=\left|-\frac{3}{a + 1}\right|=\frac{3}{|a + 1|}\neq3$,所以①组分式不互为“美妙分式”;因为$\left|\frac{4a}{a + 1}-\frac{a - 3}{a + 1}\right|=\left|\frac{3a + 3}{a + 1}\right| = 3$,所以②组分式互为“美妙分式”;因为$\left|\frac{a}{2a - 1}-\frac{7a - 3}{2a - 1}\right|=\left|\frac{6a - 3}{2a - 1}\right| = 3$,所以③组分式互为“美妙分式”。综上,其中互为“美妙分式”的是②③。
(2)设分式$\frac{a}{2a + 1}$的“美妙分式”为$A$,则$\left|A - \frac{a}{2a + 1}\right| = 3$。所以有$A - \frac{a}{2a + 1} = 3$或$A - \frac{a}{2a + 1} = -3$。当$A - \frac{a}{2a + 1} = 3$时,$A = \frac{a}{2a + 1} + 3 = \frac{7a + 3}{2a + 1}$;当$A - \frac{a}{2a + 1} = -3$时,$A = \frac{a}{2a + 1} - 3 = -\frac{5a + 3}{2a + 1}$。综上,分式$\frac{a}{2a + 1}$的“美妙分式”为$\frac{7a + 3}{2a + 1}$或$-\frac{5a + 3}{2a + 1}$。
(3)因为$\frac{4a^2}{a^2 - b^2}$与$\frac{a}{a + b}$互为“美妙分式”,所以$\left|\frac{4a^2}{a^2 - b^2}-\frac{a}{a + b}\right| = 3$,即$\left|\frac{4a^2}{(a + b)(a - b)}-\frac{a(a - b)}{(a + b)(a - b)}\right|=\left|\frac{3a^2 + ab}{(a + b)(a - b)}\right| = 3$。所以$\frac{3a^2 + ab}{(a + b)(a - b)} = 3$或$\frac{3a^2 + ab}{(a + b)(a - b)} = -3$,即$3a^2 + ab = 3a^2 - 3b^2$或$3a^2 + ab = -3a^2 + 3b^2$。因为$a$,$b$均不为$0$,所以$a = -3b$或$ab = 3b^2 - 6a^2$。当$a = -3b$时,$\frac{2a^2 - b^2}{ab}=\frac{2·(-3b)^2 - b^2}{(-3b)· b}=-\frac{17}{3}$;当$ab = 3b^2 - 6a^2$时,$\frac{2a^2 - b^2}{ab}=\frac{2a^2 - b^2}{3b^2 - 6a^2}=-\frac{1}{3}$。综上,分式$\frac{2a^2 - b^2}{ab}$的值为$-\frac{17}{3}$或$-\frac{1}{3}$。