4. (2024·秦淮区月考)如图,在$△ ABC$中,$∠ B = 90^{\circ}$.
(1)分别作其内角$∠ ACB$与外角$∠ DAC$的平分线,且两条角平分线所在的直线交于点$E$,如图,则$∠ E =\_\_\_\_\_\_^{\circ}$;
(2)分别作$∠ EAB$与$∠ ECB$的平分线,且两条角平分线交于点$F$,如图①.求$∠ AFC$的度数;
(3)在(2)的条件下,射线$FM$在$∠ AFC$的内部且$∠ AFM = \dfrac{1}{3}∠ AFC$,设$EC$与$AB$的交点为$H$,射线$HN$在$∠ AHC$的内部且$∠ AHN = \dfrac{1}{3}∠ AHC$,射线$HN$与$FM$交于点$P$,若$∠ FAH$,$∠ FPH$和$∠ FCH$满足的数量关系为$∠ FCH = m∠ FAH + n∠ FPH$,请直接写出$m$,$n$的值.

答案:4. (1) 45
(2) 解: $ \because CE $ 平分 $ ∠ ACB, \therefore ∠ ACE=∠ BCE $.
$ \because CF $ 平分 $ ∠ ECB, \therefore ∠ ECF=\frac{1}{2} ∠ ECB=\frac{1}{2} ∠ ACE $.
$ \because ∠ E+∠ EAF=∠ F+∠ ECF $,
$ \therefore 45^{\circ}+∠ EAF=∠ F+\frac{1}{2} ∠ ACE $, ①
同理可得 $ ∠ E+∠ EAB=∠ B+∠ ECB $,
$ \therefore 45^{\circ}+2 ∠ EAF=90^{\circ}+∠ ACE $,
$ \therefore ∠ EAF=\frac{45^{\circ}+∠ ACE}{2} $, ②
把②代入①, 得 $ 45^{\circ}+\frac{45^{\circ}+∠ ACE}{2}=∠ F+\frac{1}{2} ∠ ACE $,
$ \therefore ∠ F=67.5^{\circ} $,
即 $ ∠ AFC=67.5^{\circ} $.
(3) 解: 如答图, 设 $ ∠ FAH=α $,
$ \because AF $ 平分 $ ∠ EAB, \therefore ∠ FAH=∠ EAF=α $.
$ \because ∠ AFM=\frac{1}{3} ∠ AFC=\frac{1}{3} × 67.5^{\circ}=22.5^{\circ} $,
又 $ \because ∠ E+∠ EAF=∠ AFC+∠ FCH $,
$ \therefore 45^{\circ}+α=67.5^{\circ}+∠ FCH, \therefore ∠ FCH=α-22.5^{\circ} $. ①
$ \because ∠ AHN=\frac{1}{3} ∠ AHC=\frac{1}{3}(∠ B+∠ BCH)=\frac{1}{3}(90^{\circ}+2 ∠ FCH)=30^{\circ}+\frac{2}{3} ∠ FCH $,
又 $ \because ∠ FAH+∠ AFM=∠ AHN+∠ FPH $,
$ \therefore α+22.5^{\circ}=30^{\circ}+\frac{2}{3} ∠ FCH+∠ FPH $, ②
把①代入②, 得 $ ∠ FPH=\frac{α+22.5^{\circ}}{3} $.
$ \because ∠ FCH=m ∠ FAH + n ∠ FPH $,
$ \therefore α-22.5^{\circ}=m α+n · \frac{α+22.5^{\circ}}{3} $,
解得 $ m=2, n=-3 $.
