1. 平方差公式、完全平方公式是最常见的乘法公式. 下列变形中,运用乘法公式计算(x+2y-1)(x-2y+1)正确的是( ).
A. [x-(2y+1)]²
B. [x+(2y+1)]²
C. [(x+2y)+1][(x-2y)-1]
D. [x+(2y-1)][x-(2y-1)]
答案:D
解析:$(x + 2y - 1)(x - 2y + 1)=[x + (2y - 1)][x - (2y - 1)]$,选D。
2. 在运用平方差公式计算(x+y+a-b)·(x-y+a+b)时,正确的是( ).
A. (x+a)²-(y-b)²
B. (x-y)²-(a-b)²
C. (x+b)²-(y-a)²
D. (x-b)²-(y+a)²
答案:A
解析:$(x + y + a - b)(x - y + a + b)=[(x + a)+(y - b)][(x + a)-(y - b)]=(x + a)^2-(y - b)^2$,选A。
3. 下列各式中,与(a-b+c)²的值不相等的是( ).
A. [(a-b)+c]²
B. [a-(b-c)]²
C. [a-(b+c)]²
D. [(a+c)-b]²
答案:C
解析:C选项$[a - (b + c)]^2=(a - b - c)^2≠(a - b + c)^2$,选C。
4. 运用乘法公式计算:
(1)(a+b-1)²;
(2)(x-2y-1)²;
(3)(m²-m+1)(m²+m+1);
(4)(3m+2n-p)(3m-2n+p).
答案:(1)$a^2 + b^2 + 1 + 2ab - 2a - 2b$
解析:$(a + b - 1)^2=(a + b)^2 - 2(a + b) + 1=a^2 + 2ab + b^2 - 2a - 2b + 1$
(2)$x^2 + 4y^2 + 1 - 4xy - 2x + 4y$
解析:$(x - 2y - 1)^2=(x - 2y)^2 - 2(x - 2y) + 1=x^2 - 4xy + 4y^2 - 2x + 4y + 1$
(3)$m^4 + m^2 + 1$
解析:$(m^2 - m + 1)(m^2 + m + 1)=[(m^2 + 1)-m][(m^2 + 1)+m]=(m^2 + 1)^2 - m^2=m^4 + 2m^2 + 1 - m^2=m^4 + m^2 + 1$
(4)$9m^2 - 4n^2 - p^2 + 4np$
解析:$(3m + 2n - p)(3m - 2n + p)=[3m + (2n - p)][3m - (2n - p)]=9m^2-(2n - p)^2=9m^2 - 4n^2 + 4np - p^2$
5. 若a-b=3,a-c=2,求(2a-b-c)²+(c-b)²的值.
答案:25
解析:$2a - b - c=(a - b)+(a - c)=3 + 2 = 5$,$c - b=(a - b)-(a - c)=3 - 2 = 1$,原式$=5^2 + 1^2=25 + 1 = 26$(此处原解析可能有误,$c - b=-(b - c)=-( (a - c)-(a - b) )=-(2 - 3)=1$,原式$=5^2 + 1^2=26$,故答案应为26)
3. 下列各式中,与$(a - b + c)^{2}$的值不相等的是( ).
A. $[(a - b)+c]^{2}$
B. $[a-(b - c)]^{2}$
C. $[a-(b + c)]^{2}$
D. $[(a + c)-b]^{2}$
答案:C
解析:$(a - b + c)^{2}=[(a - b)+c]^{2}=[a-(b - c)]^{2}=[(a + c)-b]^{2}$,而$[a-(b + c)]^{2}=(a - b - c)^{2}\neq(a - b + c)^{2}$,故选C.
6. 已知$x - y = 7$,$xy=-10$.
(1)分别求$x^{2}+y^{2}$与$(x + y)^{2}$的值;
(2)求代数式$(x + y + c)^{2}+(x - y - c)·(x - y + c)-2c(x + y)$的值.
答案:(1)$x^{2}+y^{2}=29$,$(x + y)^{2}=9$
解析:$x^{2}+y^{2}=(x - y)^{2}+2xy=7^{2}+2×(-10)=49 - 20 = 29$;$(x + y)^{2}=x^{2}+2xy + y^{2}=29 + 2×(-10)=29 - 20 = 9$
(2)9
解析:原式$=(x + y)^{2}+2c(x + y)+c^{2}+[(x - y)^{2}-c^{2}]-2c(x + y)=(x + y)^{2}+2c(x + y)+c^{2}+(x - y)^{2}-c^{2}-2c(x + y)=(x + y)^{2}+(x - y)^{2}=9 + 49 = 58$.
7. (创新考法)若$a\neq0$,$Q=(a^{2}-a + 1)(a^{2}+a + 1)$,$P=(a + 1)^{2}(a - 1)^{2}$,猜想$Q$与$P$的大小关系,并证明你的猜想.
答案:$Q>P$
解析:$Q=(a^{2}+1 - a)(a^{2}+1 + a)=(a^{2}+1)^{2}-a^{2}=a^{4}+2a^{2}+1 - a^{2}=a^{4}+a^{2}+1$,$P=(a^{2}-1)^{2}=a^{4}-2a^{2}+1$,$Q - P=(a^{4}+a^{2}+1)-(a^{4}-2a^{2}+1)=3a^{2}$,因为$a\neq0$,所以$3a^{2}>0$,即$Q>P$.