例 解下列方程:
(1) $2x^{2}-4= 7x$;
(2) $3y^{2}-6y-1= 0$;
(3) $-\frac{1}{2}x^{2}-\frac{1}{2}x+2= 0$;
(4) $\sqrt{2}x^{2}-4x+4\sqrt{2}= 0$.
答案: 解:$x^2-\frac 72x=2$
$ x^2-\frac 72x+\frac {49}{16}=\frac {81}{16}$
$ \ \ \ \ (x-\frac 74)^2=\frac {81}{16}$
$ \ \ \ \ \ \ \ x-\frac 74=±\frac 94$
$ x_1=4,$$x_2=-\frac 12$
解:$y^2-2y-\frac 13=0$
$ \ \ \ \ \ y^2-2y+1=\frac 43$
$ \ \ \ \ \ \ \ \ (y-1)^2=\frac 43$
$ \ \ \ \ \ \ \ \ \ \ y-1=±\frac {2\sqrt {3}}3$
$ y_1=1+\frac {2\sqrt {3}}3,$$y_2=1-\frac {2\sqrt {3}}3$
解:$x^2+x-4=0$
$ x^2+x+\frac 14=\frac {17}4$
$ (x+\frac 12)^2=\frac {17}4$
$ x+\frac 12=±\frac {\sqrt {17}}2$
$ x_1=-\frac 12+\frac {\sqrt {17}}2,$$x_2=-\frac 12-\frac {\sqrt {17}}2$
解:$x^2-2\sqrt {2}x+4=0$
$ x^2-2\sqrt {2}x+2=-2$
$ (x-\sqrt {2})^2=-2$
∵$(x-\sqrt {2})^2≥0$
∴原方程无解
解析:
(1)解:$2x^{2}-7x-4=0$,$a=2$,$b=-7$,$c=-4$,$\Delta=(-7)^{2}-4×2×(-4)=49+32=81$,$x=\frac{7\pm\sqrt{81}}{2×2}=\frac{7\pm9}{4}$,$x_{1}=4$,$x_{2}=-\frac{1}{2}$;
(2)解:$a=3$,$b=-6$,$c=-1$,$\Delta=(-6)^{2}-4×3×(-1)=36+12=48$,$y=\frac{6\pm\sqrt{48}}{2×3}=\frac{6\pm4\sqrt{3}}{6}=1\pm\frac{2\sqrt{3}}{3}$,$y_{1}=1+\frac{2\sqrt{3}}{3}$,$y_{2}=1-\frac{2\sqrt{3}}{3}$;
(3)解:方程两边同乘$-2$得$x^{2}+x-4=0$,$a=1$,$b=1$,$c=-4$,$\Delta=1^{2}-4×1×(-4)=1+16=17$,$x=\frac{-1\pm\sqrt{17}}{2×1}$,$x_{1}=\frac{-1+\sqrt{17}}{2}$,$x_{2}=\frac{-1-\sqrt{17}}{2}$;
(4)解:$a=\sqrt{2}$,$b=-4$,$c=4\sqrt{2}$,$\Delta=(-4)^{2}-4×\sqrt{2}×4\sqrt{2}=16-32=-16<0$,原方程没有实数根.
1. 用配方法解方程$3x^{2}-6x+1= 0$,方程可变形为 (
A
)
A.$(x-1)^{2}= \frac{2}{3}$
B.$3(x-1)^{2}= \frac{1}{3}$
C.$(3x-1)^{2}= 1$
D.$(x-3)^{2}= \frac{1}{3}$
答案:A
解析:
解:$3x^{2}-6x+1=0$
$3x^{2}-6x=-1$
$x^{2}-2x=-\frac{1}{3}$
$x^{2}-2x+1=-\frac{1}{3}+1$
$(x-1)^{2}=\frac{2}{3}$
结论:A