5.(1)当$x=
-1
$时,代数式$x^{2}+2x-3$取最小值,最小值是$
-4
$;
(2)当$y=
2
$时,代数式$-y^{2}+4y+2$取最大值,最大值是$
6
$.
答案:-1
-4
2
6
6. 若方程$x^{2}-2x+m= 0$可以变形为$(x-n)^{2}= 5$,则$x^{2}-2x+m= 3$的解为
$ x_1=1+2\sqrt {2},x_2=1-2\sqrt {2}$
.
答案:$ x_1=1+2\sqrt {2},$$x_2=1-2\sqrt {2}$
解析:
由方程$x^{2}-2x+m=0$变形为$(x-n)^{2}=5$,将$(x-n)^{2}=5$展开得$x^{2}-2nx+n^{2}-5=0$,对比$x^{2}-2x+m=0$,可得$-2n=-2$,即$n=1$,$n^{2}-5=m$,则$m=1 - 5=-4$。
方程$x^{2}-2x+m=3$即为$x^{2}-2x - 4=3$,整理得$x^{2}-2x=7$,配方得$(x - 1)^{2}=8$,开方得$x - 1=\pm 2\sqrt{2}$,解得$x_{1}=1 + 2\sqrt{2}$,$x_{2}=1 - 2\sqrt{2}$。
$x_{1}=1+2\sqrt{2}$,$x_{2}=1-2\sqrt{2}$
7. 解下列方程:
(1)$x^{2}-6x+4= 0$;
(2)$x^{2}-99= 2x$;
(3)$x^{2}-2\sqrt{2}x+2= 0$;
(4)$y^{2}+3y= 2$;
(5)$x(x+6)= 4x+12$;
(6)$x^{2}-\frac{1}{2}x-1= 0$.
答案:解:$x^2-6x+9=5$
$ \ \ \ \ \ \ \ (x-3)^2=5$
$ \ \ \ \ \ \ \ \ \ x-3=±\sqrt {5}$
$ x_1=3+\sqrt {5},$$x_2=3-\sqrt {5}$
解:$x^2-2x+1=100$
$ \ \ \ \ \ \ \ (x-1)^2=100$
x-1=±10
$ x_1=11,$$x_2=-9$
解:$(x-\sqrt {2})^2=0$
$ x_1=x_2=\sqrt {2}$
解:$y^2+3y+\frac 94=\frac {17}4$
$ \ \ \ \ \ \ \ (y+\frac 32)^2=\frac {17}4$
$ \ \ \ \ \ \ \ \ \ y+\frac 32=±\frac {\sqrt {17}}2$
$ y_1=-\frac 32+\frac {\sqrt {17}}2,$$y_2=-\frac 32-\frac {\sqrt {17}}2$
解:$x^2+6x=4x+12$
$ \ x^2+2x+1=13$
$ \ \ \ (x+1)^2=13$
$ \ \ \ \ \ \ x+1=±\sqrt {13}$
$ x_1=-1+\sqrt {13},$$x_2=-1-\sqrt {13}$
解:$x^2-\frac 12x+\frac 1{16}=\frac {17}{16}$
$ \ \ \ \ \ \ \ \ \ (x-\frac 14)^2=\frac {17}{16}$
$ \ \ \ \ \ \ \ \ \ \ \ x-\frac 14=±\frac {\sqrt {17}}4$
$ x_1=\frac 14+\frac {\sqrt {17}}4,$$x_2=\frac 14-\frac {\sqrt {17}}4$
解析:
(1)解:$x^{2}-6x+4=0$
$a=1$,$b=-6$,$c=4$
$\Delta =b^{2}-4ac=(-6)^{2}-4×1×4=36 - 16=20$
$x=\dfrac{6\pm\sqrt{20}}{2}=\dfrac{6\pm2\sqrt{5}}{2}=3\pm\sqrt{5}$
$x_{1}=3+\sqrt{5}$,$x_{2}=3-\sqrt{5}$
(2)解:$x^{2}-2x - 99=0$
$a=1$,$b=-2$,$c=-99$
$\Delta =(-2)^{2}-4×1×(-99)=4 + 396=400$
$x=\dfrac{2\pm\sqrt{400}}{2}=\dfrac{2\pm20}{2}$
$x_{1}=\dfrac{22}{2}=11$,$x_{2}=\dfrac{-18}{2}=-9$
(3)解:$x^{2}-2\sqrt{2}x + 2=0$
$a=1$,$b=-2\sqrt{2}$,$c=2$
$\Delta =(-2\sqrt{2})^{2}-4×1×2=8 - 8=0$
$x=\dfrac{2\sqrt{2}\pm0}{2}=\sqrt{2}$
$x_{1}=x_{2}=\sqrt{2}$
(4)解:$y^{2}+3y - 2=0$
$a=1$,$b=3$,$c=-2$
$\Delta =3^{2}-4×1×(-2)=9 + 8=17$
$y=\dfrac{-3\pm\sqrt{17}}{2}$
$y_{1}=-\dfrac{3}{2}+\dfrac{\sqrt{17}}{2}$,$y_{2}=-\dfrac{3}{2}-\dfrac{\sqrt{17}}{2}$
(5)解:$x^{2}+6x - 4x - 12=0$
$x^{2}+2x - 12=0$
$a=1$,$b=2$,$c=-12$
$\Delta =2^{2}-4×1×(-12)=4 + 48=52$
$x=\dfrac{-2\pm\sqrt{52}}{2}=\dfrac{-2\pm2\sqrt{13}}{2}=-1\pm\sqrt{13}$
$x_{1}=-1+\sqrt{13}$,$x_{2}=-1-\sqrt{13}$
(6)解:$x^{2}-\dfrac{1}{2}x - 1=0$
$a=1$,$b=-\dfrac{1}{2}$,$c=-1$
$\Delta =\left(-\dfrac{1}{2}\right)^{2}-4×1×(-1)=\dfrac{1}{4} + 4=\dfrac{17}{4}$
$x=\dfrac{\dfrac{1}{2}\pm\sqrt{\dfrac{17}{4}}}{2}=\dfrac{\dfrac{1}{2}\pm\dfrac{\sqrt{17}}{2}}{2}=\dfrac{1\pm\sqrt{17}}{4}$
$x_{1}=\dfrac{1}{4}+\dfrac{\sqrt{17}}{4}$,$x_{2}=\dfrac{1}{4}-\dfrac{\sqrt{17}}{4}$
8. 配方法是一种重要的数学方法,它不仅可以用来解一元二次方程,在数学的其他领域也有着广泛的运用,请你运用配方法解下列各题.
(1)已知$x^{2}+4x+y^{2}-6y+13= 0$,则$\frac{x-2y}{x^{2}+y^{2}}= $
$ -\frac {8}{13}$
;
(2)已知a、b、c是$\triangle ABC$的三边,且满足$a^{2}+b^{2}+c^{2}-ab-bc-ac= 0$,则$\triangle ABC的形状为$
等边三角形
;
(3)已知代数式$A= 2a^{2}-4a-1$,$B= a^{2}-2a-4$.求证:对于任意a的值,代数式A-B的值恒为正数.
证明:A-B=2a²-4a-1-(a²-2a-4)
=2a²-4a-1-a²+2a+4
=a²-2a+3
=(a-1)²+2
∵(a-1)²≥0
∴(a-1)²+2>0,即A-B的值恒为正数
答案:$ -\frac {8}{13}$
等边三角形
证明:A-B=2a²-4a-1-(a²-2a-4)
=2a²-4a-1-a²+2a+4
=a²-2a+3
=(a-1)²+2
∵(a-1)²≥0
∴(a-1)²+2>0,即A-B的值恒为正数
解析:
(1)$x^{2}+4x+y^{2}-6y+13=0$,配方得$(x+2)^{2}+(y-3)^{2}=0$,则$x=-2$,$y=3$,代入得$\frac{-2-2×3}{(-2)^{2}+3^{2}}=\frac{-8}{13}$。
(2)$a^{2}+b^{2}+c^{2}-ab-bc-ac=0$,等式两边乘以2得$2a^{2}+2b^{2}+2c^{2}-2ab-2bc-2ac=0$,配方得$(a-b)^{2}+(b-c)^{2}+(a-c)^{2}=0$,则$a=b=c$,所以$\triangle ABC$是等边三角形。
(3)$A-B=(2a^{2}-4a-1)-(a^{2}-2a-4)=a^{2}-2a+3=(a-1)^{2}+2$,因为$(a-1)^{2}\geq0$,所以$(a-1)^{2}+2\geq2>0$,即对于任意$a$的值,代数式$A-B$的值恒为正数。