1. 有若干个数,第一个数记为$a_{1}$,第二个数记为$a_{2}$,第三个数记为$a_{3}$,…,第$n个数记为a_{n}$. 若$a_{1}= 10$,从第二个数起,每个数都等于$1$与它前面那个数的差的倒数,则$a_{2024}$的值为(
A
)
A.$-\frac{1}{9}$
B.$\frac{9}{10}$
C.$10$
D.$\frac{10}{9}$
答案:A 点拨:因为$a_{1}=10$,$a_{2}=\frac {1}{1-10}=-\frac {1}{9}$,$a_{3}=\frac {1}{1-(-\frac {1}{9})}=$$\frac {9}{10}$,$a_{4}=\frac {1}{1-\frac {9}{10}}=10$,$...$,所以$a_{1},a_{2},a_{3},a_{4},... ,a_{n}$以10,$-\frac {1}{9}$,$\frac {9}{10}$为一个循环组无限循环下去.因为$2024÷3=674... ... 2$,所以$a_{2024}$的值与$a_{2}$的值相同,即为$-\frac {1}{9}$.
2. 对于$x>0$,规定$f(x)= \frac{x}{x + 1}$,例如$f(2)= \frac{2}{2 + 1}= \frac{2}{3}$,$f(\frac{1}{2})= \frac{\frac{1}{2}}{\frac{1}{2}+1}= \frac{1}{3}$,那么$f(\frac{1}{2024})+f(\frac{1}{2023})+… +f(\frac{1}{3})+f(\frac{1}{2})+f(1)+f(2)+… +f(2024)= $
2023.5
.
答案:2023.5 点拨:因为$f(1)=\frac {1}{1+1}=\frac {1}{2}$,$f(2)=\frac {2}{2+1}=$$\frac {2}{3}$,$f(\frac {1}{2})=\frac {\frac {1}{2}}{\frac {1}{2}+1}=\frac {1}{3}$,$f(3)=\frac {3}{3+1}=\frac {3}{4}$,$f(\frac {1}{3})=$$\frac {\frac {1}{3}}{\frac {1}{3}+1}=\frac {1}{4}$,$...$,所以$f(2)+f(\frac {1}{2})=1$,$f(3)+f(\frac {1}{3})=1$,$...$,所以原式$=f(1)+[f(2)+f(\frac {1}{2})]+[f(3)+f(\frac {1}{3})]+... +[f(2024)+f(\frac {1}{2024})]=0.5+1×2023=2023.5$.
解析:
解:因为对于$x>0$,$f(x)=\frac{x}{x + 1}$,所以$f(\frac{1}{x})=\frac{\frac{1}{x}}{\frac{1}{x} + 1}=\frac{1}{x + 1}$,则$f(x)+f(\frac{1}{x})=\frac{x}{x + 1}+\frac{1}{x + 1}=1$。
又因为$f(1)=\frac{1}{1 + 1}=\frac{1}{2}$,原式中$f(\frac{1}{2024})$与$f(2024)$、$f(\frac{1}{2023})$与$f(2023)$、…、$f(\frac{1}{2})$与$f(2)$分别互为$f(x)$与$f(\frac{1}{x})$的形式,共有$2023$对,每对和为$1$,再加上$f(1)$。
所以原式$=f(1) + [f(2)+f(\frac{1}{2})]+[f(3)+f(\frac{1}{3})]+\cdots +[f(2024)+f(\frac{1}{2024})]=\frac{1}{2}+1×2023=2023.5$。
2023.5
3. 定义:$a是不为1$的有理数,我们把$\frac{1}{1 - a}称为a$的差倒数. 例如:$2的差倒数是\frac{1}{1 - 2}= -1$,$-1的差倒数是\frac{1}{1 - (-1)}= \frac{1}{2}$. 已知$a_{1}= -\frac{1}{3}$,$a_{2}是a_{1}$的差倒数,$a_{3}是a_{2}$的差倒数,$a_{4}是a_{3}$的差倒数,……依此类推,解答下列问题:
(1)$a_{2}= $
$\frac {3}{4}$
,$a_{3}= $
4
,$a_{4}= $
$-\frac {1}{3}$
;
(2)求$a_{1}+a_{2}+a_{3}+… +a_{2025}$的值.
解:由(1)知这列数以$-\frac {1}{3}$,$\frac {3}{4}$,4为一个循环组,依次出现.因为$-\frac {1}{3}+\frac {3}{4}+4=-\frac {4}{12}+\frac {9}{12}+\frac {48}{12}=\frac {53}{12}$,$2025÷3=675$,所以$a_{1}+a_{2}+a_{3}+... +a_{2025}=(a_{1}+a_{2}+a_{3})+... +(a_{2023}+a_{2024}+a_{2025})=\frac {53}{12}×675=\frac {11925}{4}$.
答案:(1)$\frac {3}{4}$ 4 $-\frac {1}{3}$ 点拨:由题意可得,当$a_{1}=-\frac {1}{3}$时,$a_{2}=\frac {1}{1-(-\frac {1}{3})}=\frac {3}{4}$,$a_{3}=\frac {1}{1-\frac {3}{4}}=4$,$a_{4}=\frac {1}{1-4}=-\frac {1}{3}$. (2)解:由(1)知这列数以$-\frac {1}{3}$,$\frac {3}{4}$,4为一个循环组,依次出现.因为$-\frac {1}{3}+\frac {3}{4}+4=-\frac {4}{12}+\frac {9}{12}+\frac {48}{12}=\frac {53}{12}$,$2025÷3=675$,所以$a_{1}+a_{2}+a_{3}+... +a_{2025}=(a_{1}+a_{2}+a_{3})+... +(a_{2023}+a_{2024}+a_{2025})=\frac {53}{12}×675=\frac {11925}{4}$.
解析:
(1)$\frac{3}{4}$,$4$,$-\frac{1}{3}$
(2)解:由(1)可知,这列数以$-\frac{1}{3}$,$\frac{3}{4}$,$4$为一个循环组依次循环。
因为$-\frac{1}{3}+\frac{3}{4}+4=-\frac{4}{12}+\frac{9}{12}+\frac{48}{12}=\frac{53}{12}$,
又因为$2025÷3 = 675$,
所以$a_{1}+a_{2}+a_{3}+\cdots+a_{2025}=\frac{53}{12}×675=\frac{11925}{4}$。