1. 把下列各式分解因式:
(1)$2x^{2}-4x$; (2)$a^{2}+4ab+4b^{2}$;
(3)$3x^{2}-12y^{2}$; (4)$a^{3}-a$;
(5)$2ax^{3}-50ax$; (6)$81a^{4}-1$;
(7)$9(x+y+z)^{2}-(x-y-z)^{2}$; (8)$4-4(x-y)+(x-y)^{2}$.
答案:1.(1)2x(x-2) (2)(a+2b)² (3)3(x+2y)(x-2y)
(4)a(a+1)(a-1) (5)2ax(x+5)(x-5)
(6)(9a²+1)(3a+1)(3a-1)
(7)4(x+2y+2z)(2x+y+z) (8)(x-y-2)²
2. 利用因式分解计算:
(1)$-\frac {13}{17}×19-\frac {13}{17}×15$; (2)$110^{2}-198×110+99^{2}$.
答案:解:(1)原式$=-\frac{13}{17}×(19+15)=-26.(2)$原式=(110-99)²=121.
解析:
(1)解:原式$=-\frac{13}{17}×(19 + 15)$
$=-\frac{13}{17}×34$
$=-26$
(2)解:原式$=110^2 - 2×99×110 + 99^2$
$=(110 - 99)^2$
$=11^2$
$=121$
3. 把下列各式分解因式:
(1)$ax^{2}-4ay^{2}$; (2)$4a(a-b)+b^{2}$;
(3)$(x+y)^{2}-4(x+y)+4$; (4)$-x^{3}+x^{2}-0.25x$;
(5)$(a-b)x^{2}+(b-a)y^{2}$; (6)$x^{4}-2x^{2}y^{2}+y^{4}$.
答案:$3.(1)a(x+2y)(x-2y) (2)(2a-b)² (3)(x+y-2)²(4)-x(x-\frac{1}{2})² (5)(a-b)(x+y)(x-y)(6)(x-y)²(x+y)²$
解析:
(1)解:$ax^{2}-4ay^{2}=a(x^{2}-4y^{2})=a(x+2y)(x-2y)$
(2)解:$4a(a-b)+b^{2}=4a^{2}-4ab+b^{2}=(2a-b)^{2}$
(3)解:$(x+y)^{2}-4(x+y)+4=(x+y-2)^{2}$
(4)解:$-x^{3}+x^{2}-0.25x=-x(x^{2}-x+0.25)=-x(x-\frac{1}{2})^{2}$
(5)解:$(a-b)x^{2}+(b-a)y^{2}=(a-b)(x^{2}-y^{2})=(a-b)(x+y)(x-y)$
(6)解:$x^{4}-2x^{2}y^{2}+y^{4}=(x^{2}-y^{2})^{2}=(x-y)^{2}(x+y)^{2}$