单项式的乘法法则:一般地,单项式与单项式相乘,把它们的
系数
、
同底数幂
分别相乘作为积的因式,对于只在一个单项式里含有的字母,则
连同它的指数
作为积的一个因式.
答案:系数 同底数幂 连同它的指数
1. 计算$2a^{3}\cdot 5a^{3}$的结果是 (
A
)
A.$10a^{6}$
B.$10a^{9}$
C.$7a^{3}$
D.$7a^{6}$
答案:A
解析:
解:$2a^{3}\cdot 5a^{3}=(2×5)\cdot(a^{3}\cdot a^{3})=10a^{6}$,故选A。
2. 计算$2x^{2}y\cdot (-3xy^{2})$的结果是 (
D
)
A.$-6x^{2}y^{2}$
B.$5x\ y^{3}$
C.$6x^{3}y^{3}$
D.$-6x^{3}y^{3}$
答案:D
解析:
解:$2x^{2}y\cdot (-3xy^{2})$
$=2×(-3)\cdot x^{2}\cdot x\cdot y\cdot y^{2}$
$=-6x^{3}y^{3}$
答案:D
3. 已知单项式$3x^{2}y^{3}与-2xy^{2}的积为mx^{3}y^{n}$,那么$m-n= $ (
A
)
A.$-11$
B.$5$
C.$1$
D.$-1$
答案:A
解析:
解:计算单项式的积:$3x^{2}y^{3} × (-2xy^{2}) = [3 × (-2)] × (x^{2} × x) × (y^{3} × y^{2}) = -6x^{3}y^{5}$
对比$mx^{3}y^{n}$,得$m = -6$,$n = 5$
则$m - n = -6 - 5 = -11$
答案:A
4. 计算:$2x\cdot 5x^{2}= $
$10x^{3}$
.
答案:$10x^{3}$
解析:
$2x\cdot5x^{2}=(2×5)\cdot(x\cdot x^{2})=10x^{3}$
5. 化简:$(2x)^{3}\cdot (-3xy^{2})= $
$-24x^{4}y^{2}$
.
答案:$-24x^{4}y^{2}$
解析:
$(2x)^{3}\cdot (-3xy^{2})$
$=8x^{3}\cdot (-3xy^{2})$
$=8×(-3)\cdot x^{3}\cdot x\cdot y^{2}$
$=-24x^{4}y^{2}$
故答案为:$-24x^{4}y^{2}$
6. 计算:$2ab\cdot$(
-3ac
)$=-6a^{2}bc$.
答案:-3ac
解析:
解:设括号内的式子为 $ x $,则有 $ 2ab \cdot x = -6a^{2}bc $。
$ x = -6a^{2}bc ÷ (2ab) $
$ x = (-6 ÷ 2) \cdot (a^{2} ÷ a) \cdot (b ÷ b) \cdot c $
$ x = -3ac $
-3ac
7. 计算下列各式:
(1)$(-5a^{2}b)(-3a)$;
(2)$(2x)^{3}(-5xy^{2})$;
(3)$(-3a^{3})^{2}-2a^{2}\cdot a^{4}$;
(4)$(2x^{2})^{3}-2x^{2}\cdot x^{3}+2x^{5}$;
(5)$(2×10^{3})×(1.5×10^{4})×(6×10^{4})$;
(6)$(2x^{3}y)^{2}\cdot x^{3}y+(-14x^{6})\cdot (-xy)^{3}$.
答案:(1)原式$=(-5)×(-3)\cdot a^{2}\cdot a\cdot b=15a^{3}b$
(2)原式$=8x^{3}\cdot(-5xy^{2})=8×(-5)\cdot x^{3}\cdot x\cdot y^{2}=-40x^{4}y^{2}$
(3)原式$=9a^{6}-2a^{6}=7a^{6}$
(4)原式$=8x^{6}-2x^{5}+2x^{5}=8x^{6}$
(5)原式$=(2×1.5×6)×(10^{3}×10^{4}×10^{4})=18×10^{11}=1.8×10^{12}$
(6)原式$=4x^{6}y^{2}\cdot x^{3}y+(-14x^{6})\cdot(-x^{3}y^{3})=4x^{9}y^{3}+14x^{9}y^{3}=18x^{9}y^{3}$