2. 如图,在$\triangle ABC$中,$\angle BAC = 60^{\circ}$,$\angle C = 40^{\circ}$,$AP平分\angle BAC交BC于点P$,$BQ平分\angle ABC交AC于点Q$,求证:$AB + BP = BQ + AQ$.

答案:2. 证明:方法一:延长AB到点D,使BD = BP,连接PD,如答图①,则∠D = ∠5。
∵AP、BQ分别是∠BAC、∠ABC的平分线,∠BAC = 60°,∠C = 40°,
∴∠1 = ∠2 = 30°,∠ABC = 180° - 60° - 40° = 80°,∠3 = ∠4 = 40° = ∠C,∴QB = QC。
又∠D + ∠5 = ∠3 + ∠4 = 80°,∴∠D = 40°。
在△APD与△APC中,
$\left\{ \begin{array} { l } { \angle D = \angle C, } \\ { \angle 2 = \angle 1, } \\ { AP = AP, } \end{array} \right.$
∴△APD≌△APC(AAS),∴AD = AC,
即AB + BD = AQ + QC,∴AB + BP = BQ + AQ。
方法二:易得∠CBQ = $\frac{1}{2}$∠ABC = $\frac{1}{2}$×(180° - 60° - 40°) = 40°,
∴∠CBQ = ∠C,∴BQ = CQ,
∴BQ + AQ = CQ + AQ = AC①。
过点P作PD//BQ交CQ于点D,如答图②,
则∠CPD = ∠CBQ = 40°,∴∠CPD = ∠C = 40°,
∴PD = CD,∠ADP = ∠CPD + ∠C = 40° + 40° = 80°。
∵∠ABC = 80°,∴∠ABC = ∠ADP。
∵AP平分∠BAC,∴∠BAP = ∠CAP。
在△ABP与△ADP中,
$\left\{ \begin{array} { l } { \angle ABP = \angle ADP, } \\ { \angle BAP = \angle DAP, } \\ { AP = AP, } \end{array} \right.$
∴△ABP≌△ADP(AAS),
∴AB = AD,BP = PD,
∴AB + BP = AD + PD = AD + CD = AC②。
由①②可得,AB + BP = BQ + AQ。