7. 如图,在$\triangle ABC$中,$BC = AC$,$\angle B = 35^{\circ}$,$\angle ECM = 15^{\circ}$,$AF\perp CM$,若$AF = 2.5$,则$AB$的长为(
A
)
A.5
B.5.5
C.7
D.6
解析:
解:
∵ $BC = AC$,
∴ $\triangle ABC$ 是等腰三角形,$\angle B = \angle BAC = 35^\circ$.
∴ $\angle ACB = 180^\circ - 2 × 35^\circ = 110^\circ$.
∵ $\angle ECM = 15^\circ$, 且 $B, C, E$ 共线,
∴ $\angle ACM = 180^\circ - \angle ACB - \angle ECM = 180^\circ - 110^\circ - 15^\circ = 55^\circ$.
∵ $AF \perp CM$,
∴ $\triangle AFC$ 是直角三角形,$\angle AFC = 90^\circ$.
∴ $\angle CAF = 90^\circ - \angle ACM = 90^\circ - 55^\circ = 35^\circ$.
在 $\triangle AFC$ 中,$\sin \angle ACM = \frac{AF}{AC}$,
即 $\sin 55^\circ = \frac{2.5}{AC}$.
在 $\triangle ABC$ 中,由正弦定理:$\frac{AB}{\sin \angle ACB} = \frac{AC}{\sin \angle B}$,
即 $\frac{AB}{\sin 110^\circ} = \frac{AC}{\sin 35^\circ}$.
∵ $\sin 110^\circ = \sin (90^\circ + 20^\circ) = \cos 20^\circ$, 且 $\sin 55^\circ = \cos 35^\circ$, 但简化可得 $\sin 110^\circ = \sin 70^\circ = 2 \sin 35^\circ \cos 35^\circ$,
又 $\sin 55^\circ = \cos 35^\circ$, 故 $AC = \frac{2.5}{\cos 35^\circ}$,
代入正弦定理:$AB = AC \cdot \frac{\sin 110^\circ}{\sin 35^\circ} = \frac{2.5}{\cos 35^\circ} \cdot \frac{2 \sin 35^\circ \cos 35^\circ}{\sin 35^\circ} = 5$.
∴ $AB = 5$.
答案:A