25. (10分)在$\triangle ABC$中,$AB= AC$,$D是直线BC$上一点(不与点$B$,$C$重合),以$AD为一边在AD的右侧作\triangle ADE$,使$AD= AE$,$∠DAE= ∠BAC$,连接$CE$.
(1)如图①,当点$D在线段BC$上时,若$∠BAC= 90^{\circ}$,则$∠BCE= $
$90^{\circ}$
.
(2)设$∠BAC= \alpha$,$∠BCE= \beta$.
①如图②,当点$D在线段BC$上移动时,$\alpha$,$\beta$之间有怎样的数量关系?并说明理由;
②当点$D在直线BC$上移动时,$\alpha$,$\beta$之间有怎样的数量关系?请直接写出你的结论.

(2)解:①$\alpha +\beta =180^{\circ}$.
理由如下:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,
即$\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$,
$\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB=\angle BCE=\beta$,
$\because \angle BAC+\angle B+\angle ACB=180^{\circ}$,
$\therefore \alpha +\beta =180^{\circ}$.
②当点$D$在射线$BC$上时,$\alpha +\beta =180^{\circ}$;当点$D$在射线$BC$的反向延长线上时,$\alpha =\beta$.