零五网 全部参考答案 启东中学作业本 2025年启东中学作业本八年级数学上册人教版 第158页解析答案
23. (8分)(2024秋·海安期末)如图,在等边$\triangle ABC$中,$AD= BE$,$BD与CE相交于点F$.
(1)求证:$\triangle CAE\cong \triangle BCD$;
(2)过点$B作BG\perp CE$,垂足为$G$,若$DF= 1$,$FG= 3$,求$CE$的长.

答案:(1)证明:$\because \triangle ABC$是等边三角形,
$\therefore AB=CA=BC,\angle A=\angle BCD=60^{\circ}$.
$\because AD=BE,\therefore AB - BE=CA - AD,\therefore AE=CD$.
在$\triangle CAE$和$\triangle BCD$中,$\left\{\begin{array}{l} CA=BC,\\ \angle A=\angle BCD,\\ AE=CD,\end{array}\right.$
$\therefore \triangle CAE\cong \triangle BCD(SAS)$.
(2)解:$\because BG\perp CE$于点$G,\therefore \angle BGF=90^{\circ}$.
由(1)得$\triangle CAE\cong \triangle BCD,\therefore CE=BD,\angle ACE=\angle CBD$,
$\therefore \angle BFG=\angle CBD+\angle BCE=\angle ACE+\angle BCE=\angle ACB=60^{\circ}$,
$\therefore \angle FBG=90^{\circ}-\angle BFG=30^{\circ}$.
$\because FG=3,\therefore BF=2FG=6$,
$\therefore CE=BD=BF + DF=6 + 1=7,\therefore CE$的长为7.
24. (10分)如图,在$\triangle ABC$中,$∠ACB= 90^{\circ}$,$AC= BC$,延长$AB至点D$,使$DB= AB$,连接$CD$,以$CD为一直角边作等腰Rt\triangle CDE$,其中$∠DCE= 90^{\circ}$,连接$BE$.
(1)求证:$\triangle ACD\cong \triangle BCE$;
(2)若$AB= 3cm$,则$BE= $______$cm$;
(3)$BE与AD$有何位置关系?请说明理由.

答案:
(1)证明:$\because \triangle DCE$是等腰直角三角形,$\therefore CD=CE$.
$\because \angle ACB=90^{\circ},\angle ECD=90^{\circ}$,
$\therefore \angle ECD+\angle DCB=\angle ACB+\angle DCB$,
即$\angle BCE=\angle ACD$.
在$\triangle ACD$和$\triangle BCE$中,$\left\{\begin{array}{l} CD=CE,\\ \angle ACD=\angle BCE,\\ CA=CB,\end{array}\right.$
$\therefore \triangle ACD\cong \triangle BCE(SAS)$.
(2)6
(3)解:$BE\perp AD$.理由如下:
如答图,由(1)知$\triangle ACD\cong \triangle BCE,\therefore \angle 1=\angle 2$,
又$\because \angle 3=\angle 4,\therefore \angle EBD=\angle ECD=90^{\circ},\therefore BE\perp AD$.
第24题答图
25. (10分)在$\triangle ABC$中,$AB= AC$,$D是直线BC$上一点(不与点$B$,$C$重合),以$AD为一边在AD的右侧作\triangle ADE$,使$AD= AE$,$∠DAE= ∠BAC$,连接$CE$.
(1)如图①,当点$D在线段BC$上时,若$∠BAC= 90^{\circ}$,则$∠BCE= $
$90^{\circ}$
.
(2)设$∠BAC= \alpha$,$∠BCE= \beta$.
①如图②,当点$D在线段BC$上移动时,$\alpha$,$\beta$之间有怎样的数量关系?并说明理由;
②当点$D在直线BC$上移动时,$\alpha$,$\beta$之间有怎样的数量关系?请直接写出你的结论.

(2)解:①$\alpha +\beta =180^{\circ}$.
理由如下:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,
即$\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$,
$\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB=\angle BCE=\beta$,
$\because \angle BAC+\angle B+\angle ACB=180^{\circ}$,
$\therefore \alpha +\beta =180^{\circ}$.
②当点$D$在射线$BC$上时,$\alpha +\beta =180^{\circ}$;当点$D$在射线$BC$的反向延长线上时,$\alpha =\beta$.

答案:(1)$90^{\circ}$
(2)解:①$\alpha +\beta =180^{\circ}$.
理由如下:$\because \angle BAC=\angle DAE$,
$\therefore \angle BAC-\angle DAC=\angle DAE-\angle DAC$,
即$\angle BAD=\angle CAE$.
在$\triangle ABD$和$\triangle ACE$中,$\left\{\begin{array}{l} AB=AC,\\ \angle BAD=\angle CAE,\\ AD=AE,\end{array}\right.$
$\therefore \triangle ABD\cong \triangle ACE(SAS)$,
$\therefore \angle B=\angle ACE$,
$\therefore \angle B+\angle ACB=\angle ACE+\angle ACB=\angle BCE=\beta$,
$\because \angle BAC+\angle B+\angle ACB=180^{\circ}$,
$\therefore \alpha +\beta =180^{\circ}$.
②当点$D$在射线$BC$上时,$\alpha +\beta =180^{\circ}$;当点$D$在射线$BC$的反向延长线上时,$\alpha =\beta$.
上一页 下一页