10. 如图,在$\triangle ABC$中,$∠A=90^{\circ }$,$AB=AC$,$D$是斜边$BC$的中点,点$E$,$F$分别在线段$AB$,$AC$上,且$∠EDF=90^{\circ }$.
(1)求证:$\triangle DEF$为等腰直角三角形;
(2)求证:$S_{四边形AEDF}=S_{\triangle BDE}+S_{\triangle CDF}$;
(3)如果点$E$运动到$AB$的延长线上,点$F$在射线$CA$上且保持$∠EDF=90^{\circ }$,$\triangle DEF$还是等腰直角三角形吗? 请画图并说明理由.

答案:(1) 证明:如答图①,连接 $AD$,$\because \angle BAC = 90^{\circ}$,$AB = AC$,$D$ 是斜边 $BC$ 的中点,
$\therefore AD \perp BC$,$AD = BD$,$\angle 1 = \angle B = 45^{\circ}$,
$\because \angle EDF = 90^{\circ}$,$\therefore \angle 2 + \angle 3 = 90^{\circ}$,
又 $\because \angle 3 + \angle 4 = 90^{\circ}$,$\therefore \angle 2 = \angle 4$,
在 $\triangle BDE$ 和 $\triangle ADF$ 中,$\left\{\begin{array}{l} \angle B = \angle 1, \\ BD = AD, \\ \angle 4 = \angle 2, \end{array}\right.$
$\therefore \triangle BDE \cong \triangle ADF(ASA)$,$\therefore DE = DF$。
又 $\because \angle EDF = 90^{\circ}$,$\therefore \triangle DEF$ 为等腰直角三角形。
(2) 证明:同 (1) 可证,$\triangle ADE \cong \triangle CDF$,
所以 $S_{四边形 AEDF} = S_{\triangle ADF} + S_{\triangle ADE} = S_{\triangle BDE} + S_{\triangle CDF}$,
即 $S_{四边形 AEDF} = S_{\triangle BDE} + S_{\triangle CDF}$。
(3) 解:$\triangle DEF$ 还是等腰直角三角形。如答图②,连接 $AD$。
$\because \angle BAC = 90^{\circ}$,$AB = AC$,$D$ 是斜边 $BC$ 的中点,
$\therefore AD \perp BC$,$AD = BD$,$\angle 1 = 45^{\circ}$。
$\because \angle DAF = 180^{\circ} - \angle 1 = 180^{\circ} - 45^{\circ} = 135^{\circ}$,
$\angle DBE = 180^{\circ} - \angle ABC = 180^{\circ} - 45^{\circ} = 135^{\circ}$,
$\therefore \angle DAF = \angle DBE$,
$\because \angle EDF = 90^{\circ}$,$\therefore \angle 3 + \angle 4 = 90^{\circ}$,
又 $\because \angle 2 + \angle 3 = 90^{\circ}$,$\therefore \angle 2 = \angle 4$,
在 $\triangle BDE$ 和 $\triangle ADF$ 中,$\left\{\begin{array}{l} \angle DBE = \angle DAF, \\ BD = AD, \\ \angle 4 = \angle 2, \end{array}\right.$
$\therefore \triangle BDE \cong \triangle ADF(ASA)$,$\therefore DE = DF$,
又 $\because \angle EDF = 90^{\circ}$,$\therefore \triangle DEF$ 为等腰直角三角形。
