5. (2023 秋·建邺区月考)如图,在 $ \triangle ABC $ 中, $ AB = AC $, $ \angle BAC = 120^{\circ} $, $ AB,AC $ 边的垂直平分线分别交 $ BC $ 于点 $ E,D $,连接 $ AE,AD $. 求证: $ \triangle AED $ 是等边三角形.
证明:$\because AB = AC$,$\angle BAC = 120^{\circ}$,
$\therefore \angle B = \angle C = \frac{1}{2} × (180^{\circ} - 120^{\circ}) = $
$30^{\circ}$
。
$\because AB$,$AC$边的垂直平分线分别交$BC$于点$E$,$D$,
$\therefore $
$AE = BE$
,
$AD = CD$
,
$\therefore \angle BAE = \angle B = $
$30^{\circ}$
,$\angle CAD = \angle C = $
$30^{\circ}$
,$\therefore \angle AED = \angle B + \angle BAE = $
$60^{\circ}$
,$\angle ADE = \angle C + \angle CAD = $
$60^{\circ}$
,
$\therefore \angle DAE = 180^{\circ} - \angle AED - \angle ADE = $
$60^{\circ}$
,
$\therefore \triangle ADE$是等边三角形。