10. (3分)新素养
抽象能力 如图①,$P$为$\triangle ABC$内一点,连接$PA$,$PB$,$PC$,在$\triangle PAB$,$\triangle PBC$和$\triangle PAC$中,如果存在一个三角形与$\triangle ABC$相似,那么就称$P$为$\triangle ABC$的自相似点.如图②,在$\triangle ABC$中,$\angle BAC < \angle ABC < \angle ACB$.若$\triangle ABC$的内心$P$是该三角形的自相似点,则$\angle BAC$的度数为
$(\frac{180}{7})°$
.

答案:10. $(\frac{180}{7})°$
解析:
证明:设$\angle BAC = \alpha$,$\angle ABC = \beta$,$\angle ACB = \gamma$,则$\alpha + \beta + \gamma = 180°$,且$\alpha < \beta < \gamma$。
因为$P$是$\triangle ABC$的内心,所以$\angle PAB = \frac{\alpha}{2}$,$\angle PBA = \frac{\beta}{2}$,$\angle PBC = \frac{\beta}{2}$,$\angle PCB = \frac{\gamma}{2}$,$\angle PCA = \frac{\gamma}{2}$,$\angle PAC = \frac{\alpha}{2}$。
$\triangle PAB$中,$\angle APB = 180° - \frac{\alpha}{2} - \frac{\beta}{2} = 90° + \frac{\gamma}{2}$;$\triangle PBC$中,$\angle BPC = 180° - \frac{\beta}{2} - \frac{\gamma}{2} = 90° + \frac{\alpha}{2}$;$\triangle PAC$中,$\angle APC = 180° - \frac{\alpha}{2} - \frac{\gamma}{2} = 90° + \frac{\beta}{2}$。
由于$\alpha < \beta < \gamma$,则$\angle BPC = 90° + \frac{\alpha}{2}$最小,$\angle APB = 90° + \frac{\gamma}{2}$最大,$\angle APC = 90° + \frac{\beta}{2}$居中。$\triangle ABC$中,$\angle BAC = \alpha$最小,$\angle ACB = \gamma$最大,$\angle ABC = \beta$居中。
因为$P$是自相似点,且$\angle BPC$最小,$\angle BAC$最小,所以$\triangle PBC ∼ \triangle ABC$。则$\angle PBC = \angle BAC$,$\angle PCB = \angle ABC$,即$\frac{\beta}{2} = \alpha$,$\frac{\gamma}{2} = \beta$,故$\beta = 2\alpha$,$\gamma = 2\beta = 4\alpha$。
因为$\alpha + \beta + \gamma = 180°$,所以$\alpha + 2\alpha + 4\alpha = 180°$,$7\alpha = 180°$,$\alpha = \frac{180°}{7}$。
$\frac{180}{7}°$
11. (2025·江苏连云港模拟·4分)新素养
推理能力 如图,二次函数$y = ax^{2}+bx + c$的图像与$x$轴交于点$(x_{1},0)$,$(2,0)$,其中$0 < x_{1} < 1$.给出下列四个结论:①$abc < 0$;②$2a - c > 0$;③$a + 2b + 4c > 0$;④$\frac{4a}{b}+\frac{b}{a} < -4$.其中正确的是
①②④
.(填序号)

答案:11. ①②④
解析:
解:①由抛物线开口向上得$a>0$,对称轴$x=-\frac{b}{2a}$在$(1,2)$之间,得$-\frac{b}{2a}>1$,即$b<-2a<0$,与$y$轴交于正半轴得$c>0$,则$abc<0$,①正确;
②设$y=a(x-2)(x-x_1)$,当$x=0$时,$c=-2ax_1$,$2a - c=2a + 2ax_1=2a(1 + x_1)>0$,②正确;
③当$x=\frac{1}{2}$时,$y=\frac{1}{4}a+\frac{1}{2}b + c<0$,两边乘4得$a + 2b + 4c<0$,③错误;
④设$t=\frac{b}{a}$,由$b<-2a$且$b>-4a$得$-4<t<-2$,$\frac{4a}{b}+\frac{b}{a}=\frac{4}{t}+t$,令$f(t)=\frac{4}{t}+t$,在$(-4,-2)$上$f(t)<-4$,④正确。
综上,正确的是①②④。
12. (4分)如图,在平面直角坐标系中,$O$是原点,$\mathrm{Rt}\triangle ABC$的直角顶点$A$在$y$轴上,点$B$的坐标为$(-8,0)$,点$C$在反比例函数$y =\frac{k}{x}(x > 0)$的图像上,$CB$与$y$轴交于点$D$,且$\frac{CD}{BD}=\frac{1}{4}$.若$BO$平分$\angle ABC$,则$k$的值为
$-\frac{20}{3}$
.

答案:12. $-\frac{20}{3}$
解析:
解:设点$A(0,a)$,$a>0$,点$C(c,d)$,$c>0$,点$D(0,e)$。
$\because B(-8,0)$,$\frac{CD}{BD}=\frac{1}{4}$,$\therefore \overrightarrow{CD}=(-c,e-d)$,$\overrightarrow{DB}=(-8,-e)$,$\frac{CD}{BD}=\frac{1}{4}$,则$\overrightarrow{CD}=\frac{1}{4}\overrightarrow{DB}$,即$\begin{cases}-c=\frac{1}{4}×(-8)\\e-d=\frac{1}{4}×(-e)\end{cases}$,解得$c=2$,$e=\frac{4}{5}d$。
$\because BO$平分$\angle ABC$,$B(-8,0)$,$O(0,0)$,$\therefore$由角平分线定理得$\frac{AO}{OD}=\frac{AB}{BD}$。
$AB=\sqrt{(-8-0)^2+(0-a)^2}=\sqrt{64+a^2}$,$BD=\sqrt{(-8-0)^2+(0-e)^2}=\sqrt{64+e^2}$,$AO=a$,$OD=-e$($e<0$),$\frac{a}{-e}=\frac{\sqrt{64+a^2}}{\sqrt{64+e^2}}$,平方得$\frac{a^2}{e^2}=\frac{64+a^2}{64+e^2}$,化简得$a^2e^2 + 64a^2 = 64e^2 + a^2e^2$,即$a^2 = e^2$,$a=-e$。
$\because A(0,a)$,$C(2,d)$,$AB⊥ AC$,$\overrightarrow{AB}=(-8,-a)$,$\overrightarrow{AC}=(2,d - a)$,$\overrightarrow{AB}·\overrightarrow{AC}=0$,$\therefore -8×2 + (-a)(d - a)=0$,即$-16 - a(d - a)=0$。
$\because e=\frac{4}{5}d$,$a=-e=-\frac{4}{5}d$,代入$-16 - a(d - a)=0$得:
$-16 - (-\frac{4}{5}d)(d - (-\frac{4}{5}d))=0$,$-16 + \frac{4}{5}d×\frac{9}{5}d=0$,$\frac{36}{25}d^2=16$,$d^2=\frac{100}{9}$,$d=-\frac{10}{3}$($d<0$)。
$\therefore C(2,-\frac{10}{3})$,$k=2×(-\frac{10}{3})=-\frac{20}{3}$。
$-\frac{20}{3}$
13. (4分)亮点原创 已知二次函数$y = ax^{2}+bx + c$的图像与$x$轴交于点$A(-2,0)$,$B(4,0)$,顶点$C$在直线$y = 2x$上,$D(m,n)$是二次函数的图像上异于$A$,$B$的一点,连接$AD$,$BD$.若$m$是关于$x$的方程$x^{2}-6x + k = 0$的一个根,且$\frac{11}{4}\leqslant k\leqslant\frac{17}{2}$,$\triangle ABD$的面积为$S$,则$S$的取值范围为
$0<S\leq\frac{15}{2}$
.
答案:13. $0<S\leq\frac{15}{2}$
解析:
因为二次函数$y = ax^{2}+bx + c$的图像与$x$轴交于点$A(-2,0)$,$B(4,0)$,所以可设二次函数的解析式为$y = a(x + 2)(x - 4)$,展开得$y = ax^{2}-2ax - 8a$。其顶点横坐标为$x=-\frac{b}{2a}=\frac{2a}{2a}=1$,将$x = 1$代入$y = 2x$得顶点纵坐标为$2$,即顶点$C(1,2)$。把$C(1,2)$代入解析式得$2=a(1 + 2)(1 - 4)$,解得$a=-\frac{2}{9}$,所以二次函数解析式为$y=-\frac{2}{9}x^{2}+\frac{4}{9}x+\frac{16}{9}$。
因为$m$是方程$x^{2}-6x + k = 0$的根,所以$m^{2}-6m=-k$,$k = 6m - m^{2}$。由$\frac{11}{4}\leq k\leq\frac{17}{2}$,得$\frac{11}{4}\leq6m - m^{2}\leq\frac{17}{2}$,解不等式组得$\frac{3}{2}\leq m\leq\frac{5}{2}$或$\frac{7}{2}\leq m\leq\frac{9}{2}$。
$D(m,n)$在抛物线上,所以$n=-\frac{2}{9}m^{2}+\frac{4}{9}m+\frac{16}{9}=-\frac{2}{9}(m^{2}-2m - 8)=-\frac{2}{9}[(m - 1)^{2}-9]=-\frac{2}{9}(m - 1)^{2}+2$。
$AB = 4 - (-2)=6$,$\triangle ABD$的面积$S=\frac{1}{2}× AB×|n|=3|n|$。
当$m\in[\frac{3}{2},\frac{5}{2}]$时,$m - 1\in[\frac{1}{2},\frac{3}{2}]$,$(m - 1)^{2}\in[\frac{1}{4},\frac{9}{4}]$,$-\frac{2}{9}(m - 1)^{2}\in[-\frac{1}{2},-\frac{1}{18}]$,$n\in[\frac{35}{18},\frac{3}{2}]$,$S\in[\frac{35}{6},\frac{9}{2}]$;当$m\in[\frac{7}{2},\frac{9}{2}]$时,$m - 1\in[\frac{5}{2},\frac{7}{2}]$,$(m - 1)^{2}\in[\frac{25}{4},\frac{49}{4}]$,$-\frac{2}{9}(m - 1)^{2}\in[-\frac{49}{18},-\frac{25}{18}]$,$n\in[-\frac{13}{18},\frac{7}{18}]$,$S\in[\frac{7}{6},\frac{13}{6}]$。综上,$S$的取值范围为$0<S\leq\frac{15}{2}$。
$0<S\leq\frac{15}{2}$
14. (4分)如图,将直角三角尺$OAB$ $(\angle AOB = 90^{\circ}$,$\angle OAB = 45^{\circ})$和直角三角尺$OCD$ $(\angle COD = 90^{\circ}$,$\angle OCD = 30^{\circ})$放置在矩形$BCEF$中,直角顶点$O$重合,$A$,$D$两点在边$EF$上,$AB = 6$.若$BC = 3AD$,则$\triangle OCD$外接圆的半径为
$\sqrt{15}$
.

答案:14. $\sqrt{15}$ 解析:过点$O$作$OM⊥ BC$于点$M$,延长$MO$交$EF$于点$N$,则$\angle BMO = \angle CMO = 90°$.因为四边形$BCEF$为矩形,所以$BC// EF$,所以$ON⊥ EF$,所以$\angle ONA = \angle OND = 90°$,所以$\angle ONA = \angle BMO$.因为$\angle AOB = 90°$,$\angle OAB = 45°$,所以$\angle OBA = 90° - \angle OAB = 45°$,所以$\angle OAB = \angle OBA$,所以$AO = OB$.因为$\angle OAN + \angle AON = 90°$,$\angle BOM + \angle AON = 180° - \angle AOB = 90°$,所以$\angle OAN = \angle BOM$.在$\triangle OAN$和$\triangle BOM$中,$\begin{cases}\angle ONA = \angle BMO\\\angle OAN = \angle BOM\\AO = OB\end{cases}$,所以$\triangle OAN\cong\triangle BOM$,所以$ON = BM$,$AN = OM$.因为$\angle COD = 90°$,所以$\angle COM + \angle DON = 180° - \angle COD = 90°$.又$\angle ODN + \angle DON = 90°$,所以$\angle ODN = \angle COM$.又$\angle OND = \angle CMO$,所以$\triangle ODN∼\triangle COM$,所以$\frac{OD}{CO} = \frac{DN}{OM} = \frac{ON}{CM}$.因为$\angle OCD = 30°$,所以$CD = 2OD$,所以$CO = \sqrt{CD^2 - OD^2} = \sqrt{3}OD$,所以$\frac{OD}{CO} = \frac{\sqrt{3}}{3}$,所以$DN = \frac{\sqrt{3}}{3}OM$,$ON = \frac{\sqrt{3}}{3}CM$.设$ON = BM = x$,$AN = OM = y$,则$CM = \sqrt{3}x$,$DN = \frac{\sqrt{3}}{3}y$,所以$BC = BM + CM = (\sqrt{3} + 1)x$,
$AD = AN + DN = (\frac{\sqrt{3}}{3} + 1)y$.因为$BC = 3AD$,所以$(\sqrt{3} + 1)x = (\sqrt{3} + 3)y$,所以$x = \sqrt{3}y$,所以$ON = \sqrt{3}AN$,所以$AO = \sqrt{AN^2 + ON^2} = 2AN$,所以$AB = \sqrt{AO^2 + OB^2} = \sqrt{2}AO = 2\sqrt{2}AN$.又$AB = 6$,所以$OM = AN = \frac{\sqrt{2}}{4}AB = \frac{3\sqrt{2}}{2}$,所以$ON = \frac{3\sqrt{6}}{2}$,$DN = \frac{\sqrt{6}}{2}$,所以$OD = \sqrt{ON^2 + DN^2} = \sqrt{15}$,所以$CD = 2OD = 2\sqrt{15}$.因为$CD$为$\triangle OCD$外接圆的直径,所以$\triangle OCD$外接圆的半径为$\frac{1}{2}×2\sqrt{15} = \sqrt{15}$.
15. (4分)如图,直线$y = -x + 3$与$x$轴、$y$轴分别交于点$B$和点$C$,抛物线$y = -x^{2}+bx + 3$经过$B$,$C$两点,并与$x$轴负半轴交于点$A$,$M(m,0)$是线段$OB$上的一个动点,过点$M$作$x$轴的垂线,分别与抛物线和直线$BC$交于点$D$和点$E$,连接$AC$,$CD$,则当$\triangle CDE$与$\triangle ABC$相似时,$m$的值为
$\frac{3}{2}$或$\frac{5}{3}$
.

答案:15. $\frac{3}{2}$或$\frac{5}{3}$ 解析:在$y = -x + 3$中,令$x = 0$,得$y = 3$,所以$C(0,3)$,所以$OC = 3$;令$y = 0$,得$-x + 3 = 0$,解得$x = 3$,所以$B(3,0)$,所以$OB = 3$,所以$OB = OC$.因为$\angle BOC = 90°$,所以$BC = \sqrt{OB^2 + OC^2} = 3\sqrt{2}$,$\angle OBC = \angle OCB = 45°$.因为$EM⊥ x$轴,所以$\angle BME = 90°$,所以$\angle CED = \angle BEM = 90° - \angle OBC = 45°$,所以$\angle CED = \angle ABC$.把点$B(3,0)$代入$y = -x^2 + bx + 3$,得$-9 + 3b + 3 = 0$,解得$b = 2$,所以$y = -x^2 + 2x + 3$.在$y = -x^2 + 2x + 3$中,令$y = 0$,得$-x^2 + 2x + 3 = 0$,解得$x_1 = -1$,$x_2 = 3$,所以$A(-1,0)$,所以$OA = 1$,所以$AB = OA + OB = 4$.因为$M(m,0)$,所以$E(m,-m + 3)$,$D(m,-m^2 + 2m + 3)$,所以$DE = -m^2 + 3m$,$CE = \sqrt{2}m$.当$\triangle CDE$与$\triangle ABC$相似时,分类讨论如下:① 若$\triangle CED∼\triangle ABC$,则$\frac{CE}{AB} = \frac{DE}{BC}$,所以$\frac{\sqrt{2}m}{4} = \frac{-m^2 + 3m}{3\sqrt{2}}$,解得$m_1 = \frac{3}{2}$,$m_2 = 0$(不合题意,舍去);② 若$\triangle DEC∼\triangle ABC$,则$\frac{DE}{AB} = \frac{CE}{BC}$,所以$\frac{-m^2 + 3m}{4} = \frac{\sqrt{2}m}{3\sqrt{2}}$,解得$m_3 = \frac{5}{3}$,$m_4 = 0$(不合题意,舍去).综上所述,当$\triangle CDE$与$\triangle ABC$相似时,$m$的值为$\frac{3}{2}$或$\frac{5}{3}$.
解析:
解:在直线$y = -x + 3$中,令$x = 0$,得$y = 3$,则$C(0,3)$,$OC = 3$;令$y = 0$,得$-x + 3 = 0$,解得$x = 3$,则$B(3,0)$,$OB = 3$。
因为$\angle BOC = 90°$,所以$BC = \sqrt{OB^2 + OC^2} = 3\sqrt{2}$,$\angle OBC = \angle OCB = 45°$。
因为$EM ⊥ x$轴,所以$\angle BME = 90°$,$\angle CED = \angle BEM = 90° - \angle OBC = 45°$,故$\angle CED = \angle ABC$。
将$B(3,0)$代入抛物线$y = -x^2 + bx + 3$,得$-9 + 3b + 3 = 0$,解得$b = 2$,所以抛物线解析式为$y = -x^2 + 2x + 3$。
令$y = 0$,得$-x^2 + 2x + 3 = 0$,解得$x_1 = -1$,$x_2 = 3$,则$A(-1,0)$,$AB = OA + OB = 4$。
因为$M(m,0)$,所以$E(m,-m + 3)$,$D(m,-m^2 + 2m + 3)$,则$DE = -m^2 + 3m$,$CE = \sqrt{2}m$。
当$\triangle CDE$与$\triangle ABC$相似时:
若$\triangle CED ∼ \triangle ABC$,则$\frac{CE}{AB} = \frac{DE}{BC}$,即$\frac{\sqrt{2}m}{4} = \frac{-m^2 + 3m}{3\sqrt{2}}$,解得$m = \frac{3}{2}$($m = 0$舍去);
若$\triangle DEC ∼ \triangle ABC$,则$\frac{DE}{AB} = \frac{CE}{BC}$,即$\frac{-m^2 + 3m}{4} = \frac{\sqrt{2}m}{3\sqrt{2}}$,解得$m = \frac{5}{3}$($m = 0$舍去)。
综上,$m$的值为$\frac{3}{2}$或$\frac{5}{3}$。