6. 如图,AB,CD相交于点E,且AC//EF//DB,点C,F,B在同一条直线上.已知AC = p,EF = r,DB = q,则p,q,r之间满足的数量关系式是(
C
)

A.$ \frac{1}{r} + \frac{1}{q} = \frac{1}{p} $
B.$ \frac{1}{p} + \frac{1}{r} = \frac{2}{q} $
C.$ \frac{1}{p} + \frac{1}{q} = \frac{1}{r} $
D.$ \frac{1}{q} + \frac{1}{r} = \frac{2}{p} $
解析:
证明:
∵ $AC // EF$,
∴ $\triangle BEF ∼ \triangle BAC$,
∴ $\frac{EF}{AC} = \frac{BF}{BC}$,即 $\frac{r}{p} = \frac{BF}{BC}$ ①.
∵ $EF // DB$,
∴ $\triangle CEF ∼ \triangle CDB$,
∴ $\frac{EF}{DB} = \frac{CF}{BC}$,即 $\frac{r}{q} = \frac{CF}{BC}$ ②.
① + ②得:$\frac{r}{p} + \frac{r}{q} = \frac{BF + CF}{BC} = \frac{BC}{BC} = 1$.
两边同除以 $r$ 得:$\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.
结论:$\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$
答案:C