6. (3 分)已知 $ x,y,z,a,b $ 均为非零实数,且满足 $\frac{xy}{x + y} = \frac{1}{a^3 - b^3},\frac{yz}{y + z} = \frac{1}{a^3},\frac{xz}{x + z} = \frac{1}{a^3 + b^3},\frac{xyz}{xy + yz + zx} = \frac{2}{81}$,则 $ a $ 的值为
$3$
.
解析:
解:对已知等式取倒数,得
$\frac{x + y}{xy} = a^3 - b^3$,即$\frac{1}{x} + \frac{1}{y} = a^3 - b^3$ ①
$\frac{y + z}{yz} = a^3$,即$\frac{1}{y} + \frac{1}{z} = a^3$ ②
$\frac{x + z}{xz} = a^3 + b^3$,即$\frac{1}{x} + \frac{1}{z} = a^3 + b^3$ ③
① + ② + ③,得$2(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) = 3a^3$,则$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3a^3}{2}$
又$\frac{xy + yz + zx}{xyz} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{81}{2}$
所以$\frac{3a^3}{2} = \frac{81}{2}$,解得$a^3 = 27$,$a = 3$
$3$