19. (6 分)计算:
(1)(2025·四川德阳)$ (\frac{1}{3})^{-2} - \sqrt{8} + |2 - 2\sqrt{2}| $;
(2)(2024·四川泸州)$ (\frac{y^2}{x} + x - 2y) ÷ \frac{x^2 - y^2}{x} $。
答案:19. (1)原式$= 9 - 2\sqrt{2} + 2\sqrt{2} - 2 = 7$.
(2)原式$= \frac{y^2 + x^2 - 2xy}{x} · \frac{x}{(x + y)(x - y)} = \frac{(x - y)^2}{x} · \frac{x}{(x + y)(x - y)} = \frac{x - y}{x + y}$.
20. (6 分)解方程:
(1)(2024·福建)$ \frac{3}{x + 2} + 1 = \frac{x}{x - 2} $;
(2)$ \frac{2x + 9}{3x - 9} = \frac{4x - 7}{x - 3} + 2 $。
答案:20. (1)去分母,得$3(x - 2) + (x + 2)(x - 2) = x(x + 2)$,整理,得$3x - 10 = 2x$,解得$x = 10$.经检验,$x = 10$是原分式方程的解.
(2)去分母,得$2x + 9 = 3(4x - 7) + 6(x - 3)$,整理,得$2x + 9 = 18x - 39$,解得$x = 3$.经检验,$x = 3$是原分式方程的增根.所以原分式方程无解.
21. (6 分)已知两个不相等的有理数 $ m $,$ n $ 满足 $ m^2 + n^2 = 40 $。
(1)若 $ m + n = -4 $,求 $ mn $ 的值;
(2)若 $ m^2 - 6m = k $,$ n^2 - 6n = k $,求 $ m + n $ 和 $ k $ 的值。
答案:21. (1)因为$m + n = -4$,所以$(m + n)^2 = 16$,即$m^2 + n^2 + 2mn = 16$.又$m^2 + n^2 = 40$,所以$40 + 2mn = 16$,解得$mn = -12$.则$mn$的值为$-12$.
(2)令$m^2 - 6m = k$①,$n^2 - 6n = k$②.由① - ②,得$m^2 - 6m - n^2 + 6n = 0$,所以$(m + n) · (m - n) - 6(m - n) = 0$.所以$(m - n)(m + n - 6) = 0$.又$m$,$n$互不相等,所以$m + n - 6 = 0$,即$m + n = 6$.由① + ②,得$2k = m^2 + n^2 - 6m - 6n$,所以$k = \frac{1}{2}[m^2 + n^2 - 6(m + n)]$.又$m^2 + n^2 = 40$,所以$k = \frac{1}{2} × (40 - 6 × 6) = 2$.则$m + n$的值为$6$,$k$的值为$2$.