17. (2025·如皋期末)四边形$ABCD$为正方形,$E$为对角线$AC$上一点,连接$DE$。过点$E$作$EF ⊥ DE$,交射线$BC$于点$F$。
(1) 如图①,若点$F$在边$BC$上,求证:$DE = EF$。
(2) 以$DE$,$EF$为邻边作矩形$DEFG$,连接$CG$。
① 如图②,若$AB = 4$,$CE = 3\sqrt{2}$,求$CG$的长;
② 当线段$DE$与正方形$ABCD$一边的夹角是$35^{\circ}$时,请求出$\angle EFC$的度数。

答案:17.(1) 连接$BE.\because$四边形$ABCD$是正方形,$\therefore BC = DC$,$\angle BCA = \angle DCA = 45^{\circ}$.又$\because EC = EC$,$\therefore \triangle BCE \cong \triangle DCE$.
$\therefore BE = DE$,$\angle EBC = \angle EDC.\because$四边形$ABCD$是正方形,
$\therefore \angle DCF = 90^{\circ}.\because DE ⊥ EF$,$\therefore \angle DEF = 90^{\circ}.\therefore \angle CDE + \angle CFE = 360^{\circ} - (\angle DCF + \angle DEF) = 180^{\circ}.\because \angle CFE + \angle EFB = 180^{\circ}$,$\therefore \angle CDE = \angle EFB.\therefore \angle EBF = \angle EFB$.
$\therefore BE = EF.\therefore DE = EF$ (2) ①$\because$四边形$DEFG$为矩形,由(1)知,$DE = EF$,$\therefore$四边形$DEFG$为正方形.$\therefore DE = DG$.
$\because$四边形$ABCD$为正方形,$\therefore AD = DC$,$\angle ADC = 90^{\circ} = \angle EDG.\therefore \angle ADE = \angle CDG.\therefore \triangle ADE \cong \triangle CDG.\therefore AE = CG.\because AB = 4$,$\therefore$易得$AC = 4\sqrt{2}.\because CE = 3\sqrt{2}$,$\therefore CG = AE = AC - CE = \sqrt{2}$ ② 当$\angle ADE = 35^{\circ}$时,$\angle CDE = 90^{\circ} - \angle ADE = 55^{\circ}.\because$易知$\angle CDE + \angle EFC = 180^{\circ}$,$\therefore \angle EFC = 125^{\circ}$.当$\angle CDE = 35^{\circ}$时,设$EF$交$DC$于点$H$.
$\because \angle DEH = \angle HCF = 90^{\circ}$,$\angle DHE = \angle CHF$,$\therefore \angle EFC = \angle CDE = 35^{\circ}$.综上所述,$\angle EFC = 125^{\circ}$或$35^{\circ}$
