1. 在 $△ ABC$ 和 $△ DEF$ 中,已知下列条件:
(1)$∠ A = 45^{\circ}$,$AB = 12$,$AC = 15$,$∠ D = 45^{\circ}$,$DE = 16$,$DF = 20$;
(2)$AB = 12$,$BC = 15$,$AC = 24$,$DE = 20$,$EF = 25$,$DF = 40$;
(3)$∠ A = 47^{\circ}$,$AB = 15$,$AC = 20$,$∠ E = 47^{\circ}$,$DE = 28$,$EF = 21$。
能判定 $△ ABC$ 与 $△ DEF$ 相似的有(
D
)
A.$0$ 个
B.$1$ 个
C.$2$ 个
D.$3$ 个
解析:
(1) $\because ∠ A = ∠ D = 45°$,$\frac{AB}{DE} = \frac{12}{16} = \frac{3}{4}$,$\frac{AC}{DF} = \frac{15}{20} = \frac{3}{4}$,$\therefore \frac{AB}{DE} = \frac{AC}{DF}$,$\therefore △ ABC ∼ △ DEF$;
(2) $\because \frac{AB}{DE} = \frac{12}{20} = \frac{3}{5}$,$\frac{BC}{EF} = \frac{15}{25} = \frac{3}{5}$,$\frac{AC}{DF} = \frac{24}{40} = \frac{3}{5}$,$\therefore \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$,$\therefore △ ABC ∼ △ DEF$;
(3) $\because ∠ A = ∠ E = 47°$,$\frac{AB}{EF} = \frac{15}{21} = \frac{5}{7}$,$\frac{AC}{DE} = \frac{20}{28} = \frac{5}{7}$,$\therefore \frac{AB}{EF} = \frac{AC}{DE}$,$\therefore △ ABC ∼ △ EFD$,即$△ ABC ∼ △ DEF$;
能判定相似的有3个。
D