26. 如图(1),已知两条直线AB,CD被直线EF所截,分别交于点E,F,EM平分$\angle AEF$交CD于点M,且$\angle FEM= \angle FME$.
(1)判断直线AB与直线CD是否平行,并说明理由.
(2)如图(2),点G是射线MD上一动点(不与点M,F重合),EH平分$\angle FEG$交CD于点H,过点H作$HN \perp EM$于点N,设$\angle EHN= \alpha$,$\angle EGF= \beta$.
①当点G在点F的右侧时,若$\beta=50^\circ$,求α的度数.
②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以说明.

答案:(1)AB//CD,理由如下:
∵EM平分∠AEF,
∴∠AEM = ∠MEF.又∠FEM = ∠FME,
∴∠AEM = ∠EMF,
∴AB//CD.
(2)①
∵AB//CD,β = 50°,
∴∠AEG = 130°.又EH平分∠FEG,EM平分∠AEF,
∴∠HEF = $\frac{1}{2}$∠FEG,∠MEF = $\frac{1}{2}$∠AEF,
∴∠MEH = $\frac{1}{2}$∠AEG = 65°.又HN⊥ME,
∴∠EHN = 90° - 65° = 25°,即α = 25°;②α = $\frac{1}{2}$β或α = 90° - $\frac{1}{2}$β,理由如下:分两种情况讨论:当点G在点F的右侧时,α = $\frac{1}{2}$β.
∵AB//CD,
∴∠AEG = 180° - β.又EH平分∠FEG,EM平分∠AEF,
∴∠HEF = $\frac{1}{2}$∠FEG,∠MEF = $\frac{1}{2}$∠AEF,
∴∠MEH = $\frac{1}{2}$∠AEG = $\frac{1}{2}$(180° - β).又HN⊥ME,
∴∠EHN = 90° - ∠MEH = 90° - $\frac{1}{2}$(180° - β) = $\frac{1}{2}$β,即α = $\frac{1}{2}$β;如图,当点G在点F的左侧时,α = 90° - $\frac{1}{2}$β.

∵AB//CD,
∴∠AEG = ∠EGF = β.又EH平分∠FEG,EM平分∠AEF,
∴∠HEF = $\frac{1}{2}$∠FEG,∠MEF = $\frac{1}{2}$∠AEF,
∴∠MEH = ∠MEF - ∠HEF = $\frac{1}{2}$(∠AEF - ∠FEG) = $\frac{1}{2}$∠AEG = $\frac{1}{2}$β.又HN⊥ME,
∴∠EHN = 90° - ∠MEH,即α = 90° - $\frac{1}{2}$β.综上所述,α = $\frac{1}{2}$β或α = 90° - $\frac{1}{2}$β.