1. 口算:
(1)$(7^{5})^{4}=$
$7^{20}$
; (2)$(x^{5})^{2}=$
$x^{10}$
;
(3)$[(-7)^{4}]^{5}=$
$7^{20}$
; (4)$-(-x^{5})^{2}=$
$-x^{10}$
;
(5)$(ab^{2})^{3}=$
$a^{3}b^{6}$
; (6)$(-3cd)^{2}=$
$9c^{2}d^{2}$
;
(7)$(-2b^{2})^{3}=$
$-8b^{6}$
; (8)$(-2b)^{4}=$
$16b^{4}$
.
答案:1.(1)$7^{20}$ (2)$x^{10}$ (3)$7^{20}$ (4)$-x^{10}$ (5)$a^{3}b^{6}$ (6)$9c^{2}d^{2}$ (7)$-8b^{6}$ (8)$16b^{4}$
2. 计算:
(1)$x^{2}\cdot (-x^{3})^{4}$; (2)$(-a^{2})^{3}\cdot (-a^{3})^{2}$;
(3)$(-t^{4})^{3}+(-t^{2})^{6}$; (4)$(x^{3})^{2}+(-x^{2})^{3}-x\cdot x^{5}$;
(5)$(3a)^{2}\cdot a^{3}$; (6)$x^{4}\cdot x^{3}\cdot x+(x^{4})^{2}+(-2x^{2})^{4}$;
(7)$a^{3}\cdot a^{4}\cdot a+(-2a^{4})^{2}$; (8)$(-x^{3})^{2}(x^{2})^{3}+(-x^{3})^{4}$.
答案:2.(1)$x^{14}$ (2)$-a^{12}$ (3)0 (4)$-x^{6}$ (5)$9a^{5}$ (6)$18x^{8}$ (7)$5a^{8}$ (8)$2x^{12}$
解析:
(1)原式$=x^{2}\cdot x^{12}=x^{14}$
(2)原式$=-a^{6}\cdot a^{6}=-a^{12}$
(3)原式$=-t^{12}+t^{12}=0$
(4)原式$=x^{6}-x^{6}-x^{6}=-x^{6}$
(5)原式$=9a^{2}\cdot a^{3}=9a^{5}$
(6)原式$=x^{8}+x^{8}+16x^{8}=18x^{8}$
(7)原式$=a^{8}+4a^{8}=5a^{8}$
(8)原式$=x^{6}\cdot x^{6}+x^{12}=x^{12}+x^{12}=2x^{12}$