13. 如图,在平面直角坐标系中,$A(0,a)$,$B(b,0)$,且$a$,$b$满足$\begin{cases}2a - b = 20,\\3a + 2b = 2.\end{cases}$作射线$BA$,动点$P$从点$B$开始沿射线$BA$以每秒$2$个单位长度的速度运动,设运动时间为$t$秒.
(1)求点$A$,$B$的坐标;
(2)设$\triangle AOP$的面积为$S$,用含$t$的式子表示$S$,并直接写出$t$的取值范围;
(3)$M$为线段$OP$的中点,连接$AM$,当点$P$在线段$BA$上,$\triangle AOM$的面积为$\triangle AOB$的面积的$\frac{1}{3}$时,求出$t$的值,并求出此时点$M$到$x$轴的距离.

答案:解:(1)由$\begin{cases}2a - b = 20\\3a + 2b = 2\end{cases}$解得$\begin{cases}a = 6\\b = - 8\end{cases}$
∴A(0,6),B( - 8,0).
(2)如答图①,作OH⊥AB于点H.∵$S_{\triangle AOB}=\frac{1}{2}\cdot OA\cdot OB=\frac{1}{2}\cdot AB\cdot OH$,∴$OH=\frac{6×8}{10}=\frac{24}{5}$.
∵AB = 10,∴点P从点B运动到点A的时间为5秒,当0≤t<5时,$S=\frac{1}{2}\cdot PA\cdot OH=\frac{1}{2}(10 - 2t)×\frac{24}{5}=24-\frac{24}{5}t$.
当t>5时,$S=\frac{1}{2}\cdot PA\cdot OH=\frac{1}{2}(2t - 10)×\frac{24}{5}=\frac{24}{5}t - 24$.
综上所述,$S=\begin{cases}24-\frac{24}{5}t(0\leqslant t<5)\\\frac{24}{5}t - 24(t>5)\end{cases}$
(3)如答图②,连接BM.
∵OM = PM,∴$S_{\triangle AOM}=S_{\triangle APM}$,
∵$S_{\triangle AOM}=\frac{1}{3}S_{\triangle AOB}$,∴$S_{\triangle OPB}=\frac{1}{3}S_{\triangle AOB}$,
∴BP = $\frac{1}{3}$AB,∴2t = $\frac{10}{3}$,即t = $\frac{5}{3}$.
设点M到x轴的距离为h.
∵OM = PM,∴$S_{\triangle OBM}=\frac{1}{2}S_{\triangle OPB}=\frac{1}{6}S_{\triangle AOB}$,
∴$\frac{1}{2}$×8×h = $\frac{1}{6}$×$\frac{1}{2}$×6×8,
解得h = 1,∴点M到x轴的距离为1.
