1.「2024 内蒙古通辽中考」手工课堂上,老师给每个制作小组发

放一把花折伞和制作花折伞的材料及工具.同学们认真观察后,组装了花折伞的骨架,粘贴了彩色伞面,制作出精美的花折伞.



【模型建立】
(1)如图 1,从花折伞中抽象出“牵形图”,$AM = AN$,$DM = DN$.求证$∠AMD = ∠AND$.
【模型应用】
(2)如图 2,在$△AMC$中,$∠MAC的平分线AD交MC于点D$.请你从以下两个条件:①$∠AMD = 2∠C$;②$AC = AM + MD$中选择一个作为已知条件,另一个作为结论,并写出结论成立的证明过程.(注:只需选择一种情况作答)
【拓展提升】
(3)如图 3,$AC为\odot O$的直径,$\overset{\frown}{AB} = \overset{\frown}{BC}$,$∠BAC的平分线AD交BC于点E$,交$\odot O于点D$,连接$CD$.求证:$AE = 2CD$.
答案:解析
(1) 证明:在$\triangle ADM$和$\triangle ADN$中,$\left\{\begin{array}{l} AM = AN,\\ DM = DN,\\ AD = AD,\end{array}\right.$
$\therefore \triangle ADM\cong \triangle ADN(SSS)$,
$\therefore ∠AMD = ∠AND$。
(2) 选择②为条件,①为结论,
如图,在$AC$上取点$N$,使$AN = AM$,连接$DN$,
$\because AD$平分$∠MAC$,$\therefore ∠DAM = ∠DAN$,
在$\triangle ADM$和$\triangle ADN$中,
$\because AM = AN$,$∠DAM = ∠DAN$,$AD = AD$,
$\therefore \triangle ADM\cong \triangle ADN(SAS)$,
$\therefore DM = DN$,$∠AMD = ∠AND$,
$\because AC = AM + MD$,$AC = AN + NC$,
$\therefore DM = CN$,$\therefore DN = CN$,$\therefore ∠C = ∠CDN$,
$\therefore ∠AMD = ∠AND = ∠CDN + ∠C = 2∠C$。
(亦可选择①为条件,②为结论,证明略)
(3) 证明:如图,连接$BD$,取$AE$的中点$F$,连接$BF$,
$\because AD$平分$∠BAC$,$\therefore ∠BAD = ∠DAC$,$\therefore \overset{\frown}{DC} = \overset{\frown}{BD}$,
$\therefore BD = CD$,$\therefore ∠BCD = ∠CBD$,$\because AC$为$\odot O$的直径,
$\therefore ∠ABC = 90^{\circ}$,$\therefore AE = 2BF = 2AF$,$\therefore ∠ABF = ∠BAF$,
$\because ∠BAF = ∠BCD$,$\therefore ∠ABF = ∠CBD$,$\because \overset{\frown}{AB} = \overset{\frown}{BC}$,
$\therefore AB = BC$,$\therefore \triangle ABF\cong \triangle CBD(ASA)$,$\therefore BF = BD = CD$,
$\therefore AE = 2CD$。