列方程解应用题(2)教学设计

信息发布者:admin
总课时数
6
主备教师
零五网
教学内容
列方程解应用题(2)
课型
新授
教学目标
1、学生在解决实际问题的过程中,理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。
教学重点
正确寻找等量关系列方程并解方程。
教学难点
正确寻找等量关系列方程并解方程。
教学准备
多媒体
教学过程(师生互动)
二次备课
一、复习引入
1.回忆列方程解决问题的一般步骤。
学生小组内交流。
2.在横线上写出含有字母的式子。
(1)明明写了a个生字,红红写的字比明明写的3倍还多5个。红红写了(                 )个生字。
(2)男生x人,女生比男生人数的1.5倍少8人。女生有(                   )人。
学生独立思考后,指名回答。

    二、讲授新知
1. 导入。
教师:西安是我国有名的历史文化名城,有许多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。(多媒体出示西安大雁塔和小雁塔图片)这节课,就让我们一起来研究一个与它们有关的数学问题。(多媒体出示教材第9页例8)

2.探究新知。
(1)分析题旨、提出问题
教师:仔细观察,认真分析,题目中告诉了我们哪些条件?需要我们解决什么问题?
学生认真读题,分析题意,全班交流。
教师:根据你的分析,能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?
      学生独立思考,全班交流汇报。
(2)找等量关系。
教师:你能用一个等量关系式来表示它们之间的相等关系吗?
小组合作,全班交流。
多媒体出示各种等量关系式的情况:
①小雁塔的高度×2-22=大雁塔的高度;
②小雁塔的高度×2=大雁塔的高度+22;
③小雁塔的高度×2-大雁塔的高度=22;
④(大雁塔的高度+22)÷2=小雁塔的高度。
教师在充分肯定学生能从不同的角度分析题中数量关系的基础上,引导学生比较最后一种想法与前面几种想法的不同。然后着重引导学生观察第一个等量关系。
教师:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?
指名学生回答。
(3)引导列出方程。
教师:通过我们的观察与交流,你觉得可以用什么方法来解决这个问题?
学生独立思考,全班交流。
教师:根据等量关系式,你们能列出方程吗?
学生先自主尝试设未知数,并根据第一个等量关系式列出方程,全班交流,教师板书。
                  解:设小雁塔高x米。
                 2x-22=64
(4)自主思考、解方程。
教师:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?怎样将这个方程变形为我们以前学过的方程?
小组合作探究,全班交流。
通过交流使学生明确:首先把2x 看出一个整体,先求出2x等于多少,所以可以应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。
教师和学生一起完成例题呈现的方程两边同时“+22”的步骤,让学生继续独立解答,求出方程的解。
       组织交流解方程的整个过程,并完整板书。
            解:设小雁塔高 x米。
              2x-22=64
            2x-22+22=64+22
                2x=86
                    x=43

(5)引导检验、培养习惯。
教师:你打算怎样对这道题进行检验?
学生各自检验,指名汇报检验方法。
教师:列方程解决实际问题检验答案是否正确,不光要检验结果是不是方程的解,还要把答案作为已知条件,看能不能满足题目中的数量关系。
3.内化理解、触类旁通。
教师:根据等量关系还可以怎样列方程解决?
学生独立列出方程后,在小组内交流各自列的方程,并说说列方程的依据。
集体交流,然后说说怎样来解自己的方程。
4.对比归纳、掌握方法。
教师:刚才我们通过列方程解决了一个实际问题,我们来一起看看这几种列方程的方法,你觉得那种比较简便?为什么?
小组交流,明确:顺着题意来列方程比较简便。
三、巩固应用
(一)预习答疑
这道题里数量关系有多种,但我们一般用求和的关系式即“看了的页数+剩下的页数= 一共看的”,这样在解方程时比较方便。
(二)教材习题
1.教材第10页“练一练”。
引导学生顺着题意写着关系式,再依据关系式列方程解方程。学生独立完成,选1人板演,教师巡视辅导,针对共性讲评。(解:设香港青马大桥全长大约x千米。x×16+0.8=36   x=2.2)
2. 教材第11页练习二第5题。
独立解答,集体讲评,每道题选一名学生说一说解题思路。(x=9   x=0.3   x=3.8 )
3. 教材第11页练习二第6题。
学生直接填空,全班交流。(3x+15   4x-80)
4.教材第11页练习二第7题。
学生独立完成,教师巡视辅导,集中讲评。(讲评: 解:设猫的最快时速是x千米。2x+20=110  x=45)
5.教材第11页练习二。第8题。
学生独立完成,教师巡视辅导,集中讲评。(讲评:解:设水星绕太阳一周大约要用x天。4x-13=365  x=94.5)
(三)课堂作业
完成第三部分习题设计“课堂作业”第1、3题。
学生在作业纸上直接写出答案,教师让做错的同学说一说思路,予以专门辅导。
四、总结提升
1.我们今天继续学习了列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?
2.解方程解实际问题时应注意什么?你有哪些收获?还有哪些困惑?
五、布置作业
完成第三部分习题设计“课后作业”第567题。
设计意图:学习新知识以前,进行两个内容的准备性练习,为新课做好铺垫,为下一步学习新知识做好准备。

设计意图:用图文结合的方式展示信息,使数学学习和对历史景观的了解有机融合,增强了学生的探索兴趣,激发学生全身心地投入到问题的研究中去。





设计意图:找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题,这是解决问题的关键一步。通过小组合作交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系,从而灵活地解决问题。








设计意图:以解决问题为载体,引导学生在解决问题的过程中逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。

设计意图:设计引导学生掌握解决实际问题检验的方法,养成自觉检验的习惯。是为了在引导学生掌握数学知识的同时,注意处理好智力培养与习惯养成的关系,着眼于全面素质的培养和提高。
设计意图:在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,方法并不是越多越好,这里不是要求学生一题多解。教学中要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同,进而进一步优化方法。

等量关系式: 小雁塔的高度×222=大雁塔的高度
                                    解:设小雁塔高 米。
                                          2x2264  
                                    2x22226422
                                               2x86
                                                 x43
                                                答:小雁塔高43米。
列方程解决实际问题的关键——找出等量关系。寻找等量关系没有固定的模式照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找等量关系的方法。学生对几倍少几这祥的数量关系已有初步的了解。因此,例1要求学生找出大雁塔与小雁塔高度之间的等量关系,让他们利用已有的倍数概念和相差概念,通过推理,把“比小雁 的2倍少22米”改写成数学式子“小雁塔高度×2 — 22”,从而得到等量关系。但是例1为什么还出现“还可以怎样列方程”这样的追问?这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如:小雁塔的高度×2 —大雁塔的高度=22、小雁塔的高度×2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同。还要引导学生体会例题中所呈现的等量关系比其他等量关系求解更容易,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。

本页答案点评

用户评论

我要纠错