小学奥数公式大全及其运用

信息发布者:admin

1 、每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2 、1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3 、速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4 、单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5 、工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6 、加数+加数=和

和-一个加数=另一个加数

7 、被减数-减数=差

被减数-差=减数

差+减数=被减数

8 、因数×因数=积

积÷一个因数=另一个因数

9 、被除数÷除数=商

被除数÷商=除数

商×除数=被除数


1 、正方形

C周长 S面积 a边长

周长=边长× 4

C=4a

面积=边长×边长

S=a×a

2 、正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3 、长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 、三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 、平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 、 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8、 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 、圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 、圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数


和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数


和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)



差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)


植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)



⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数



⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)



2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数


盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数


相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间


追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间


流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2


浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量


利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)



1、甲、乙两车分别从A、B两地出发相向而行。出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米。那么A、B两地相距___千米。




【解】甲、乙原来的速度比是5:4,相遇后的速度比是


5×(1-20%):4×(1+20%)=4:4.8=5:6。


相遇时,甲、分别走了全程的 和 。


A、B两地相距10÷( - × )=450(千米)







2、早晨8点多钟有两辆汽车先后离开化肥厂向幸福村开去。两辆车的速度都是每小时60千米。8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的三倍。到了8 点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍。那么,第一辆汽车是8点几分离开化肥厂的?




【解】39-32=7,这7分钟每辆行驶的距离恰好等于第二辆车在8点32分行过的距离的1(=3-2)倍,因此第一辆车在8点32分已行了7×3=21(分),它是8点11分离开化肥厂的(32-21=11)


注:本题结论与两车的速度大小无关,只要它们的速度相同,答案都是8点11分。





3、甲、乙两车都从A地出发经过B地驶往C地,A、B两地的距离等于B、C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟;甲则不住地驶往C地。最后乙车比甲车迟4分钟到达C地。那么,乙车出发后____分钟时,甲车就超过乙车。




【解】从A地到C地,不考虑中途停留,乙车比甲车多用时8分钟.最后甲比乙早到4分钟,

所以甲车在中点B超过乙.甲车行全程所用时间是乙所用时间的80%,所以乙行全程用

8÷(1-80%)=40(分钟)

甲行全程用40-8=32(分钟)

甲行到B用32÷2=16(分钟)

即在乙出发后11+16=27(分钟)甲车超过乙车




4、铁路旁的一条平等小路上,有一行人与一骑车人同时向南行进,行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟。这列火车的车身总长是____(①22米②56米③781米④286米⑤308米)


【解】设这列火车的速度为x米/秒,又知行人速度为1米/秒,骑车人速度为3米/秒。依题意,这列火车的车身长度是


(x-1)×22=(x-3)×26


化简得4 x=56,即x=14(米/秒)


所以火车的车身总长是(14-1)×22=286(米),故选④。







5、人乘竹排沿江顺水飘流而下,迎面遇到一艘逆流而上的快艇,他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一艘轮船。”竹排继续顺水飘流了1小时遇到了迎面开来的这艘轮船。那么快艇静水速度是轮船静水速度的___倍。




【解】对于竹排来说,它自身不动,而快艇、轮船都以它们在静水中的速度向它驶来。


快艇半小时走的路程,轮船用了1小时,因此快艇静水中的速度是轮船静水速度的2倍。





6、某司机开车从A城到B城。如果按原定速度前进,可准时到达。当路程走了一半时,司机发现前一半路程中,实际平均速度只可达到原定速度的11/13 。现在司机想准时到达B城,在后一半的行程中,实际平均速度与原速度的比是_______。




【解】前一半路程用的时间是原定的 ,多用了 -1= 。要起准时到达,后一半路程只能用原定时间的1- = ,所以后一半行程的速度是原定速度的 ,即11:9





7、甲、乙两辆汽车分别从A、B两站同时出发,相向而行,第一次相遇在距A站28千米处,相遇后两车继续行进,各自到达B、A两站后,立即沿原路返回,第二次相遇在距A站60千米处。A、B两站间的路程是___千米。




【解】甲、乙第一次相遇在C处,此时,甲、乙所行路程之和等于A、B间的距离。


甲、乙第二次相遇在D处,乙由C到A再沿反方向行到D,共走60+28=88(千米),甲由C到B再沿反方向行到D。此时,甲、乙所行路程之和等于A、B间的距离的2倍,于是第二次之和等于A、B间的距离的2倍,甲、乙所走的路程也分别是第一次相遇时各自所行路程的2倍。这样,第一次相遇时乙所行路程BC=88÷2=44(千米)。从而AB=28+44=72(千米)





8、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒……(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?




半圆周长63厘米。如果蚂蚁不调头走,用63÷(5.5+3.5)=7秒即相遇


由于13-11+9-7+5-3+1=7,所以经过13+11+9+7+5+3+1=49秒,两只蚂蚁相遇。

本页答案点评

用户评论

我要纠错