6. (2025·江苏连云港)如图,在 $ \triangle ABC $ 中,$ \angle ACB = 90° $,$ \angle CAB = 30° $,$ AD $ 平分 $ \angle CAB $,$ BE ⊥ AD $,$ E $ 为垂足,则 $ \frac{AD}{BE} $ 的值为(
A
)

A.$ 2\sqrt{3} $
B.$ \frac{7\sqrt{3}}{3} $
C.$ \frac{5\sqrt{3}}{2} $
D.$ \frac{8\sqrt{3}}{3} $
解析:
解:设 $ BC = a $,在 $ \triangle ABC $ 中,$ \angle ACB = 90° $,$ \angle CAB = 30° $,则 $ AB = 2a $,$ AC = \sqrt{3}a $。
$ AD $ 平分 $ \angle CAB $,$ \angle CAD = 15° $,在 $ \triangle ACD $ 中,$ \tan 15° = \frac{CD}{AC} $,$ CD = AC \tan 15° = \sqrt{3}a(2 - \sqrt{3}) $,$ AD = \frac{AC}{\cos 15°} = \frac{\sqrt{3}a}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \sqrt{3}a · \frac{4}{\sqrt{6} + \sqrt{2}} = 2\sqrt{3}a(\sqrt{6} - \sqrt{2}) / (\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2}) = 2\sqrt{3}a(\sqrt{6} - \sqrt{2}) / 4 = \frac{\sqrt{3}a(\sqrt{6} - \sqrt{2})}{2} = \frac{3\sqrt{2}a - \sqrt{6}a}{2} $。
在 $ \triangle ABE $ 中,$ \angle BAE = 15° $,$ BE = AB \sin 15° = 2a · \frac{\sqrt{6} - \sqrt{2}}{4} = \frac{a(\sqrt{6} - \sqrt{2})}{2} $。
$ \frac{AD}{BE} = \frac{\frac{3\sqrt{2}a - \sqrt{6}a}{2}}{\frac{a(\sqrt{6} - \sqrt{2})}{2}} = \frac{3\sqrt{2} - \sqrt{6}}{\sqrt{6} - \sqrt{2}} = \frac{\sqrt{6}(\sqrt{3} - 1)}{\sqrt{2}(\sqrt{3} - 1)} = \sqrt{3} × \sqrt{2} = \sqrt{6} $(注:此处原计算有误,正确过程应为:分子分母同乘$ \sqrt{6} + \sqrt{2} $,$ \frac{(3\sqrt{2} - \sqrt{6})(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} = \frac{3\sqrt{12} + 3\sqrt{4} - \sqrt{36} - \sqrt{12}}{6 - 2} = \frac{6\sqrt{3} + 6 - 6 - 2\sqrt{3}}{4} = \frac{4\sqrt{3}}{4} = \sqrt{3} $,仍与答案不符,正确方法设 $ AC = \sqrt{3} $,$ AB = 2 $,$ AD = \frac{AC}{\cos 15°} = \frac{\sqrt{3}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \sqrt{3}( \sqrt{6} - \sqrt{2}) = 3\sqrt{2} - \sqrt{6} $,$ BE = AB \sin 15° = 2 × \frac{\sqrt{6} - \sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{2} $,$ \frac{AD}{BE} = \frac{3\sqrt{2} - \sqrt{6}}{\frac{\sqrt{6} - \sqrt{2}}{2}} = 2 × \frac{\sqrt{2}(3 - \sqrt{3})}{\sqrt{2}(\sqrt{3} - 1)} = 2 × \frac{(3 - \sqrt{3})(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = 2 × \frac{3\sqrt{3} + 3 - 3 - \sqrt{3}}{2} = 2 × \frac{2\sqrt{3}}{2} = 2\sqrt{3} $)
$\frac{AD}{BE} = 2\sqrt{3}$
A