典例3 观察下列各式,并解答问题:
$\dfrac{1}{\sqrt{2} + 1} = \sqrt{2} - 1$;$\dfrac{1}{\sqrt{3} + \sqrt{2}} = \sqrt{3} - \sqrt{2}$;$\dfrac{1}{\sqrt{4} + \sqrt{3}} = \sqrt{4} - \sqrt{3}$;$\dfrac{1}{\sqrt{5} + \sqrt{4}} = \sqrt{5} - \sqrt{4}$……
(
1)若$n$为正整数,则$\dfrac{1}{\sqrt{n + 1} + \sqrt{n}} =$
$\sqrt{n + 1} - \sqrt{n}$
;
(2)计算:$(\dfrac{1}{\sqrt{2} + 1} + \dfrac{1}{\sqrt{3} + \sqrt{2}} + \dfrac{1}{\sqrt{4} + \sqrt{3}} + ··· + \dfrac{1}{\sqrt{2026} + \sqrt{2025}}) × (\sqrt{2026} + 1)$.
答案:【思路分析】(1)观察题目所给等式得出规律,即可进行解答;(2)根据(1)中总结的一般规律,先将第一个括号化简,再根据平方差公式进行计算即可.
【答案】(1)$\sqrt{n + 1} - \sqrt{n}$
(2)原式$= (\sqrt{2} - 1 + \sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + ··· + \sqrt{2026} - \sqrt{2025}) · (\sqrt{2026} + 1) = (\sqrt{2026} - 1)(\sqrt{2026} + 1) = 2026 - 1 = 2025$.
【变式3】新趋势
推导探究 观察下列各式,并解答下列问题:
第1个等式:$\dfrac{1}{\sqrt{2} + 2\sqrt{1}} = \dfrac{1}{\sqrt{1}} - \dfrac{1}{\sqrt{2}}$;
第2个等式:$\dfrac{1}{2\sqrt{3} + 3\sqrt{2}} = \dfrac{1}{\sqrt{2}} - \dfrac{1}{\sqrt{3}}$;
第3个等式:$\dfrac{1}{3\sqrt{4} + 4\sqrt{3}} = \dfrac{1}{\sqrt{3}} - \dfrac{1}{\sqrt{4}}$
……
(1)第4个等式为
$\frac{1}{4\sqrt{5}+5\sqrt{4}}=\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{5}}$
;
(2)猜想第$n$($n$为正整数)个等式为
$\frac{1}{n\sqrt{n + 1}+(n + 1)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n + 1}}$
;
(3)计算:$\dfrac{
1}{\sqrt{2} + 2\sqrt{1}} + \dfrac{1}{2\sqrt{3} + 3\sqrt{2}} + ··· + \dfrac{1}{2024\sqrt{2025} + 2025\sqrt{2024}}$.
答案:(1)$\frac{1}{4\sqrt{5}+5\sqrt{4}}=\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{5}}$
(2)
①$\frac{1}{n\sqrt{n + 1}+(n + 1)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n + 1}}$;
解析:因为第1个等式:$\frac{1}{\sqrt{2}+2\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}$;第2个等式:$\frac{1}{2\sqrt{3}+3\sqrt{2}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}$;第3个等式:$\frac{1}{3\sqrt{4}+4\sqrt{3}}=\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}$……所以第$n$个等式为$\frac{1}{n\sqrt{n + 1}+(n + 1)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n + 1}}$.
(3)原式$=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+···+\frac{1}{\sqrt{2024}}-\frac{1}{\sqrt{2025}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2025}}=1-\frac{1}{45}=\frac{44}{45}$