1. 已知关于 x,y 的方程组$\{\begin{array}{l} x + 2y = k + 7,\\ 3x + 5y = 4k + 18\end{array} $的解也是方程$2x + 3y = 11$的解,求k的值.
答案:解:$\{\begin{array}{l}x + 2y = k + 7,①\\3x + 5y = 4k + 18,②\end{array} $
②$-$①,得$2x + 3y = 3k + 11$.
$∵$关于$x$,$y$的方程组$\{\begin{array}{l}x + 2y = k + 7\\3x + 5y = 4k + 18\end{array} $的解也是方程$2x + 3y = 11$的解,
$∴3k + 11 = 11$,$∴k = 0$.
2. (2024·盱眙月考)已知关于 x,y 的方程组$\{\begin{array}{l} nx + (n + 1)y = n + 2,\\ x - 2y + mx = - 5\end{array} $(n 是常数).
(1)当$n = 1$时,则方程组可化为$\{\begin{array}{l} x + 2y = 3,\\ x - 2y + mx = - 5.\end{array} $
①请直接写出方程$x + 2y = 3$的所有非负整数解;
②若该方程组的解也满足方程$x + y = 2$,求 m 的值.
(2)当$n = 3$时,如果方程组有整数解,求整数 m 的值.
答案:解:(1)①$∵x$,$y$为非负整数,$∴$方程$x + 2y = 3$的所有非负整数解为$\{\begin{array}{l}x = 1\\y = 1\end{array} $,$\{\begin{array}{l}x = 3\\y = 0\end{array} $.
②根据题意,得$\{\begin{array}{l}x + 2y = 3,①\\x + y = 2,②\end{array} $
①$-$②,得$y = 1$.
将$y = 1$代入②,得$x = 1$,
$∴$原方程组的解是$\{\begin{array}{l}x = 1\\y = 1\end{array} $.
将$\{\begin{array}{l}x = 1\\y = 1\end{array} $代入$x - 2y + mx = - 5$,得$m = - 4$.
(2)当$n = 3$时,原方程组可化为$\{\begin{array}{l}3x + 4y = 5,①\\x - 2y + mx = - 5,②\end{array} $
②$× 2$,得$2x - 4y + 2mx = - 10$,③
①$+$③,得$(5 + 2m)x = - 5$.
$∵$方程组有整数解,且$m$为整数,
$∴5 + 2m = \pm 1$或$5 + 2m = \pm 5$.
当$5 + 2m = 1$时,$m = - 2$,此时方程组的解是$\{\begin{array}{l}x = - 5\\y = 5\end{array} $;
当$5 + 2m = - 1$时,$m = - 3$,此时方程组的解是$\{\begin{array}{l}x = 5\\y = - \dfrac{5}{2}\end{array} $(舍去);
当$5 + 2m = 5$时,$m = 0$,此时方程组的解是$\{\begin{array}{l}x = - 1\\y = 2\end{array} $;
当$5 + 2m = - 5$时,$m = - 5$,此时方程组的解是$\{\begin{array}{l}x = 1\\y = \dfrac{1}{2}\end{array} $(舍去).
综上,整数$m$的值为$- 2$或$0$.