1. 计算:
(1)$(x - 3)(x + 6)$; (2)$(2x + 3y)(3x - y)$;
(3)$(2x - 1)(3x^{2} + 2x + 1)$; (4)$(x - 40)(-x + 100)$;
(5)$(x + 2y)(x - 3y) + xy$; (6)$(a - 2b)(a^{2} + 2ab + 4b^{2})$;
(7)$4m(m - n) + (5m - n)(m + n)$; (8)$(2a + b)(a - 2b) - 3a(2a - b)$;
(9)$(x + 3y)^{2}$; (10)$5y^{2} - (y - 2)(3y + 1) - 2(y + 1)(y - 5)$.
答案:1. (1)$x^{2}+3x-18$ (2)$6x^{2}+7xy-3y^{2}$ (3)$6x^{3}+x^{2}-1$
(4)$-x^{2}+140x-4000$ (5)$x^{2}-6y^{2}$ (6)$a^{3}-8b^{3}$
(7)$9m^{2}-n^{2}$ (8)$-4a^{2}-2b^{2}$ (9)$x^{2}+6xy+9y^{2}$
(10)$13y+12$
2. (2024·张家港期中)已知$(x^{3} + mx + n)(x^{2} - 3x + 1)$展开后的结果中不含$x^{3}$和$x^{2}$项.
求:(1)$m$,$n$的值;
(2)$(m + n)(m^{2} - mn + n^{2})$的值.
答案:2. 解:(1)原式$=x^{5}-3x^{4}+(m+1)x^{3}+(n-3m)x^{2}+(m-3n)x+n$,
由展开式不含$x^{3}$和$x^{2}$项,得$m+1=0$,$n-3m=0$,
解得$m=-1$,$n=-3$。
(2)当$m=-1$,$n=-3$时,原式$=m^{3}-m^{2}n+mn^{2}+m^{2}n-mn^{2}+n^{3}=m^{3}+n^{3}=-1-27=-28$。