答案:4. 如图,连接AM.
∵ 四边形ABCD 是正方形,
∴AB = BC = CD = AD = 8,∠B = ∠C = ∠D = 90°.
∴CE = CD - DE = 8 - 2 = 6. 由翻折的性质,可得AF = AD = AB,∠AFE = ∠D = 90°, EF = DE = 2.
∴∠AFM = 180° - ∠AFE = 90°.
∵AM = AM,
∴Rt△ABM ≌ Rt△AFM.
∴BM = FM. 设BM = FM = x,则 CM = 8 - x,ME = x + 2. 在Rt△MCE 中,由勾股定理,可得 CM² + CE² = ME²,即(8 - x)² + 6² = (x + 2)²,解得x = $\frac{24}{5}$.
∴BM = $\frac{24}{5}$
