答案:5.C 解析:如图,延长FE,DA交于点H.
∵四边形ABCD为平行四边形,
∴AD//BC.
∵E为AB的中点,EF⊥BC,垂足为F,AB = CF = 6,
∴AE = BE = $\frac{1}{2}$AB = 3,∠H = ∠BFE = 90°.
∵BF = 2,
∴AD = BC = BF + CF = 8,EF = $\sqrt{BE^2 - BF^2}$ = $\sqrt{3^2 - 2^2}$ = $\sqrt{5}$.在△AEH和△BEF中,$\begin{cases} ∠H = ∠BFE, \\ ∠AEH = ∠BEF, \\ AE = BE, \end{cases}$
∴△AEH≌△BEF.
∴EH = EF = $\sqrt{5}$,AH = BF = 2.
∴FH = EH + EF = 2$\sqrt{5}$,DH = AD + AH = 10.
∴在Rt△DHF中,DF = $\sqrt{FH^2 + DH^2}$ = $\sqrt{(2\sqrt{5})^2 + 10^2}$ = 2$\sqrt{30}$
