自主拓展
如图(1),以$□ ABCD$的较短边$CD$为一边作菱形$CDEF$,使点$F$落在边$AD$上,连接$BE$,交$AF$于点$G$.
(1)猜想$BG$与$EG$的数量关系,并说明理由;
(2)延长$DE$,$BA$交于点$H$,其他条件不变.
① 如图(2),若$∠ ADC=60^{\circ}$,求$\dfrac{DG}{BH}$的值;
② 如图(3),若$∠ ADC=α(0^{\circ}<α<90^{\circ})$,直接写出$\dfrac{DG}{BH}$的值.(用含$α$的三角函数表示)

]
答案:(1) $BG = EG$,理由如下:$\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$,$AB = CD$. $\because$四边形$CDEF$是菱形,$\therefore CD// EF$,$CD = EF$. $\therefore AB// EF$,$AB = EF$. $\therefore∠ ABG=∠ FEG$. 又$\because∠ AGB=∠ FGE$,$\therefore△ ABG≌△ FEG$(AAS). $\therefore BG = EG$.
(2) ① 方法1:如图(1),过点$G$作$GM// BH$,交$DH$于点$M$,
$\therefore∠ EMG=∠ EHA$. $\because∠ GEM=∠ BEH$,$\therefore△ GME∼△ BHE$. $\therefore\frac{GM}{BH}=\frac{GE}{BE}$. 由(1)知$BG = EG$. $\therefore EG=\frac{1}{2}BE$. $\therefore\frac{GM}{BH}=\frac{GE}{BE}=\frac{1}{2}$. $\because$四边形$CDEF$为菱形,$\therefore∠ ADC=∠ EDF = 60^{\circ}$. $\because$四边形$ABCD$是平行四边形,$\therefore AB// CD$. $\therefore∠ CDF=∠ HAD = 60^{\circ}$. $\because GM// AH$,$\therefore∠ MGD=∠ HAD = 60^{\circ}$. $\therefore∠ GMD = 180^{\circ}-∠ MGD-∠ MDG = 60^{\circ}$,即$∠ GMD=∠ MGD=∠ MDG = 60^{\circ}$. $\therefore△ MGD$是等边三角形. $\therefore DG = MG$. $\therefore\frac{DG}{BH}=\frac{MG}{BH}=\frac{1}{2}$.
方法2:如图(2),延长$ED$,$BC$交于点$M$,
$\because$四边形$CDEF$为菱形,$\therefore∠ EDF=∠ CDF = 60^{\circ}$. $\because$四边形$ABCD$为平行四边形,$\therefore∠ ABC=∠ ADC = 60^{\circ}$,$AD// BC$. $\therefore∠ EDF=∠ M = 60^{\circ}$,$∠ H = 180^{\circ}-∠ HBM-∠ M = 180^{\circ}-60^{\circ}=60^{\circ}$,即$∠ HBM=∠ M=∠ H = 60^{\circ}$. $\therefore△ HBM$为等边三角形. $\therefore HB = MB$. $\because AD// BC$,$\therefore∠ EGD=∠ EBM$,$∠ EDG=∠ M$. $\therefore△ EDG∼△ EMB$,$\therefore\frac{DG}{MB}=\frac{EG}{EB}$. 由(1)知$BG = EG$. $\therefore EG=\frac{1}{2}BE$. $\therefore\frac{DG}{MB}=\frac{GE}{BE}=\frac{1}{2}$. $\because HB = MB$,$\therefore\frac{DG}{BH}=\frac{DG}{MB}=\frac{1}{2}$.
② $\cosα$. 如图(3),连接$EC$交$DF$于$O$,
$\because$四边形$CFED$是菱形,$\therefore EC⊥ AD$,$FD = 2FO$. 设$FG = a$,$AB = b$,则$AG = a$,$EF = ED = CD = b$. $Rt△ EFO$中,$\cosα=\frac{OF}{EF}$,$\therefore OF = b\cosα$,$\therefore DG = a + 2b\cosα$. 过$H$作$HM⊥ AD$于$M$,$\because∠ ADC=∠ HAD=∠ ADH=α$,$\therefore AH = HD$,$\therefore AM=\frac{1}{2}AD=\frac{1}{2}(2a + 2b\cosα)=a + b\cosα$,$Rt△ AHM$中,$\cosα=\frac{AM}{AH}$,$\therefore AH=\frac{a + b\cosα}{\cosα}$,$\therefore\frac{DG}{BH}=\frac{a + 2b\cosα}{b+\frac{a + b\cosα}{\cosα}}=\cosα$.