6. 如图,正方形ABCD的边长为a,以BC为直径向正方形内画半圆,EF切半圆于点G,分别交AB、CD于点E、F.
(1) 求四边形AEFD的周长;
(2) 已知∠BEF= 60°,求四边形EBCF的周长.

答案:解:( 1 ) ∵四边形ABCD为正方形
∴∠ABC=∠DCB=90°∴EB,FC为半圆的切线
∵EF与半圆相切于点G
∴EB=EG,FC=FG.
∴C_{四边形AEFD}=AE+EG+FG+FD+AD
=( AE+EB ) +( FC+FD ) +AD
=AB+CD+AD
=3a,
即四边形AEFD的周长为3a
解:( 2 ) 过点F作FH⊥AB,垂足为点H

在Rt△FHE中,
∵∠BEF=60°
∴∠HFE=90°-60°=30°
∴EF=2EH,$FH=\sqrt{3}EH$
∵FH=BC=a
∴$EH=\frac {\sqrt{3}}{3}a,$
$EF=\frac {2\sqrt{3}}{3}a$
∴C_{四边形EBCF}
=EB+CF+EF+BC
=EG+FG+EF+BC
=2EF+BC
$=(\frac {4\sqrt{3}}{3}+1)a,$
即边形EBCF的周长为$(\frac {4\sqrt{3}}{3}+1)a $
解析:
(1)设半圆的圆心为O,半径为$\frac{a}{2}$,设$BE = x$,$CF = y$。因为EF切半圆于G,所以$EG = BE = x$,$FG = CF = y$。在直角梯形EBCF中,$EF = x + y$,高$BC = a$,下底$BC = a$,上底$EF$在两腰之间,过F作$FH \perp AB$于H,则$EH = x - y$,$FH = a$。在$Rt\triangle EHF$中,$(x + y)^2 = a^2 + (x - y)^2$,化简得$4xy = a^2$。四边形AEFD的周长为$AE + EF + FD + DA = (a - x) + (x + y) + (a - y) + a = 3a$。
(2)因为$\angle BEF = 60^\circ$,在$Rt\triangle EHF$中,$\cos 60^\circ = \frac{EH}{EF} = \frac{x - y}{x + y} = \frac{1}{2}$,即$2(x - y) = x + y$,得$x = 3y$。由(1)知$4xy = a^2$,将$x = 3y$代入得$4 × 3y × y = a^2$,$y = \frac{a}{2\sqrt{3}} = \frac{\sqrt{3}a}{6}$,$x = \frac{\sqrt{3}a}{2}$。四边形EBCF的周长为$BE + BC + CF + EF = x + a + y + (x + y) = 2x + 2y + a = 2(x + y) + a$。由$x = 3y$,$x + y = 4y = \frac{2\sqrt{3}a}{3}$,所以周长为$2 × \frac{2\sqrt{3}a}{3} + a = \frac{4\sqrt{3}a}{3} + a = (\frac{4\sqrt{3}}{3} + 1)a$。