25. (12分)已知$\angle AOD= 160^{\circ}$,$OB为\angle AOD$内部的一条射线.
(1)如图①,若$OM平分\angle AOB$,$ON平分\angle BOD$,则$\angle MON$的度数为______;
(2)如图②,$\angle BOC在\angle AOD$内部($\angle AOC>\angle AOB$),且$\angle BOC= 20^{\circ}$,$OF平分\angle AOC$,$OG平分\angle BOD$(射线$OG在射线OC$左侧),求$\angle FOG$的度数;
(3)在(2)的条件下,$\angle BOC绕点O$运动过程中,若$\angle BOF= 8^{\circ}$,求$\angle COG$的度数.

答案:(1) 80°
(2)解:因为OF平分∠AOC,OG平分∠BOD,
所以∠FOC = $\frac{1}{2}$∠AOC,∠BOG = $\frac{1}{2}$∠BOD,
所以∠FOG = ∠FOC + ∠BOG - ∠BOC = $\frac{1}{2}$∠AOC + $\frac{1}{2}$∠BOD - ∠BOC = $\frac{1}{2}$(∠AOC + ∠BOD) - ∠BOC = $\frac{1}{2}$(∠AOD + ∠BOC) - ∠BOC = $\frac{1}{2}$(∠AOD - ∠BOC) = $\frac{1}{2}$×(160° - 20°) = 70°.
(3)解:当OF在OB的右侧时,如题图②.
设∠COG = x,则∠BOG = x + 20°.
因为OF平分∠AOC,OG平分∠BOD,
所以∠AOF = ∠FOC = 20° + 8° = 28°,∠BOD = 2(x + 20°).
因为∠AOD = ∠AOF + ∠BOF + ∠BOD,
所以160° = 28° + 8° + 2(x + 20°),
解得x = 42°,即∠COG = 42°.
当OF在OB的左侧时,如答图.
设∠COG = x,则∠BOG = x + 20°,
因为OF平分∠AOC,OG平分∠BOD,
所以∠AOF = ∠FOC = 20° - 8° = 12°,∠BOD = 2(x + 20°).
因为∠AOD = ∠AOB + ∠BOD,
所以160° = 12° - 8° + 2(x + 20°),解得x = 58°,
即∠COG = 58°.
综上,∠COG的度数为42°或58°.
