6. 计算$\frac{1}{1×4}+\frac{1}{4×7}+\frac{1}{7×10}-1$的结果是 (
D
)
A.$\frac{7}{10}$
B.$\frac{3}{10}$
C.$-\frac{3}{10}$
D.$-\frac{7}{10}$
答案:D
解析:
$\begin{aligned}&\frac{1}{1×4}+\frac{1}{4×7}+\frac{1}{7×10}-1\\=&\frac{1}{3}\left(1 - \frac{1}{4}\right)+\frac{1}{3}\left(\frac{1}{4} - \frac{1}{7}\right)+\frac{1}{3}\left(\frac{1}{7} - \frac{1}{10}\right)-1\\=&\frac{1}{3}\left(1 - \frac{1}{4}+\frac{1}{4} - \frac{1}{7}+\frac{1}{7} - \frac{1}{10}\right)-1\\=&\frac{1}{3}\left(1 - \frac{1}{10}\right)-1\\=&\frac{1}{3}×\frac{9}{10}-1\\=&\frac{3}{10}-1\\=&-\frac{7}{10}\end{aligned}$
D
7. (宿迁期末)计算:$(-1)^{2025}+(-2)^{4}-2^{4}÷(-2)^{3}$的结果为
17
。
答案:17
解析:
$(-1)^{2025}+(-2)^{4}-2^{4}÷(-2)^{3}$
$=-1 + 16 - 16÷(-8)$
$=-1 + 16 + 2$
$=17$
8. 计算:
(1) $-1^{2}-(1+0.5)×\frac{1}{3}÷(-4)$; (2) $(-4)×(-\frac{5}{7})÷(-\frac{4}{7})-(-\frac{1}{2})^{2}$;
(3) $-1-\{ (-3)^{3}-[3+\frac{2}{3}×(-1\frac{1}{2})]÷(-2)\}$;
(4) $\frac{9}{2}×[-3^{2}×(-\frac{1}{3})^{2}-0.8]+(-2\frac{1}{4})$。
答案:解:
(1)原式=-1-$\frac{3}{2}$×$\frac{1}{3}$×(-$\frac{1}{4}$)=-1+$\frac{1}{8}$=-$\frac{7}{8}$.
(2)原式=(-4)×(-$\frac{5}{7}$)×(-$\frac{7}{4}$)-$\frac{1}{4}$=-5-$\frac{1}{4}$=-5$\frac{1}{4}$.
(3)原式=-1-[-27-(3-1)÷(-2)]=-1-(-27+1)=-1-(-26)=25.
(4)原式=$\frac{9}{2}$×[-9×$\frac{1}{9}$-$\frac{4}{5}$]-2$\frac{1}{4}$=$\frac{9}{2}$×(-1-$\frac{4}{5}$)-2$\frac{1}{4}$=$\frac{9}{2}$×(-$\frac{9}{5}$)-2$\frac{1}{4}$=-8.1-2.25=-10.35.
9. 已知$x,y$为有理数,现规定一种新运算※:$x※y= xy+1$。
(1) 求$2※4$的值;
(2) 求$(1※4)※(-2)$的值;
(3) 任意选择两个有理数(至少有一个是负数),分别填入下列$□和○$中,并比较它们的运算结果:$□※○和○※□$。
答案:解:
(1)2※4=2×4+1=8+1=9.
(2)(1※4)※(-2)=(1×4+1)※(-2)=5※(-2)=5×(-2)+1=-9.
(3)(-3)※2=(-3)×2+1=-5,2※(-3)=2×(-3)+1=-5,可得□※○=○※□.(答案不唯一)
10. (2024·苏州四区统考)(1)知识探究:$2^{1}-2^{0}= 2^{(\quad)}$,$2^{2}-2^{1}= 2^{(\quad)}$,$2^{3}-2^{2}= 2^{(\quad)}$……上述括号按顺序填写为
0
,
1
,
2
;(注:$2^{0}= 1$)
(2) 发现规律:试写出第$n$个等式,并验证此等式成立;
解:第n个等式是$2^n$-$2^{n-1}$=$2^{n-1}$,验证如下:因为$2^n$-$2^{n-1}$=2×$2^{n-1}$-1×$2^{n-1}$=(2-1)×$2^{n-1}$=1×$2^{n-1}$=$2^{n-1}$,所以第n个等式是$2^n$-$2^{n-1}$=$2^{n-1}$.
(3) 拓展应用:计算$2^{1}+2^{2}+2^{3}+…+2^{2024}$。
解:设S=$2^1$+$2^2$+$2^3$+…+$2^{2024}$,①于是2S=2($2^1$+$2^2$+$2^3$+…+$2^{2024}$)=$2^2$+$2^3$+$2^4$+…+$2^{2025}$,②②-①,得2S-S=($2^2$+$2^3$+$2^4$+…+$2^{2025}$)-($2^1$+$2^2$+$2^3$+…+$2^{2024}$)=$2^{2025}$-2,即S=$2^{2025}$-2.故原式=$2^{2025}$-2.
答案:
(1)0 1 2
(2)解:第n个等式是$2^n$-$2^{n-1}$=$2^{n-1}$,验证如下:因为$2^n$-$2^{n-1}$=2×$2^{n-1}$-1×$2^{n-1}$=(2-1)×$2^{n-1}$=1×$2^{n-1}$=$2^{n-1}$,所以第n个等式是$2^n$-$2^{n-1}$=$2^{n-1}$.
(3)解:设S=$2^1$+$2^2$+$2^3$+…+$2^{2024}$,①于是2S=2($2^1$+$2^2$+$2^3$+…+$2^{2024}$)=$2^2$+$2^3$+$2^4$+…+$2^{2025}$,②②-①,得2S-S=($2^2$+$2^3$+$2^4$+…+$2^{2025}$)-($2^1$+$2^2$+$2^3$+…+$2^{2024}$)=$2^{2025}$-2,即S=$2^{2025}$-2.故原式=$2^{2025}$-2.