12.(18分)已知$\triangle ABC$中,$AB= AC$.
(1)如图①,在$\triangle ADE$中,$AD= AE$,连接$BD$,$CE$,若$∠DAE= ∠BAC$,求证:$BD= CE$;
(2)如图②,在$\triangle ADE$中,$AD= AE$,连接$BE$,$CE$,若$∠DAE= ∠BAC= 60^{\circ }$,$CE⊥AD于点F$,$AE= 4$,$AC= \sqrt {7}$,求$BE$的长;
(3)如图③,在$\triangle BCD$中,$∠CBD= ∠CDB= 45^{\circ }$,连接$AD$,若$∠CAB= 45^{\circ }$,求$\frac {AD}{AB}$的值.

答案:(1)证明:$\because \angle DAE = \angle BAC$,$\therefore \angle EAC = \angle DAB$,$\because AE = AD$,$AC = AB$,$\therefore \triangle EAC \cong \triangle DAB (SAS)$,$\therefore EC = BD$. (2)解:如答图①,连接$BD$.

$\because AE = AD$,$\angle EAD = 60^{\circ}$,$\therefore \triangle AED$是等边三角形,$\therefore \angle DEA = \angle ADE = 60^{\circ}$,$\because EF \perp AD$,$\therefore \angle FEA = \frac{1}{2}\angle DEA = 30^{\circ}$,$\therefore AF = \frac{1}{2}AE = 2$.$\because \angle DAE = \angle BAC$,$\therefore \angle EAC = \angle DAB$,$\because AE = AD$,$AC = AB$,$\therefore \triangle EAC \cong \triangle DAB (SAS)$,$\therefore \angle BDA = \angle AEC = 30^{\circ}$,$EC = BD$,$\therefore \angle EDB = \angle EDA + \angle BDA = 90^{\circ}$.$\because AE = 4$,$AF = 2$,$AC = \sqrt{7}$,$\angle EFA = \angle AFC = 90^{\circ}$,$\therefore EF = \sqrt{AE^2 - AF^2} = \sqrt{4^2 - 2^2} = 2\sqrt{3}$,$CF = \sqrt{AC^2 - AF^2} = \sqrt{7 - 4} = \sqrt{3}$,$\therefore EC = BD = 3\sqrt{3}$,$\therefore BE = \sqrt{DE^2 + BD^2} = \sqrt{4^2 + (3\sqrt{3})^2} = \sqrt{43}$. (3)解:如答图②,作$CM \perp CA$,使得$CM = CA$,连接$AM$,$BM$.$\because CA = CM$,$\angle ACM = 90^{\circ}$,$\therefore \angle CAM = 45^{\circ}$,$\because \angle CAB = 45^{\circ}$,$\therefore \angle MAB = 45^{\circ} + 45^{\circ} = 90^{\circ}$.设$AB = AC = m$,则$AM = \sqrt{2}m$,$BM = \sqrt{AM^2 + AB^2} = \sqrt{3}m$,$\because \angle ACM = \angle BCD = 90^{\circ}$,$\therefore \angle BCM = \angle ACD$,$\because CA = CM$,$CB = CD$,$\therefore \triangle ACD \cong \triangle MCB (SAS)$,$\therefore AD = BM = \sqrt{3}m$,$\therefore \frac{AD}{AB} = \frac{\sqrt{3}m}{m} = \sqrt{3}$.