25. (10分)(2023春·高新区期末)如图,在$\triangle ABC$中,$AD为BC$边上的高,$AE是\angle BAD$的平分线,点$F为AE$上一点,连接$BF$,$\angle BFE = 45^{\circ}$.
(1) 求证:$BF平分\angle ABE$;
(2) 连接$CF交AD于点G$,若$S_{\triangle ABF} = S_{\triangle CBF}$,求证:$\angle AFC = 90^{\circ}$;
(3) 在(2)的条件下,当$BE = 3$,$AG = 4.5$时,求线段$AB$的长.

答案:(1)证明:∵AE是$\angle BAD$的平分线,
∴$\angle BAD = 2\angle BAF$.
∵$\angle BFE = 45^{\circ}$,
∴$\angle FBA+\angle BAF = 45^{\circ}$,∴$2\angle FBA+2\angle BAF = 90^{\circ}$.
∵AD为BC边上的高,
∴$\angle EBF+\angle FBA+2\angle BAF = 90^{\circ}$,
∴$2\angle FBA=\angle EBF+\angle FBA$,∴$\angle EBF=\angle FBA$.
∴BF平分$\angle ABE$.
(2)证明:如答图,过点F作$FM\perp BC$于点M,$FN\perp AB$于点N.
∵BF平分$\angle ABE$,$FM\perp BC$,$FN\perp AB$,∴$FM = FN$.
∵$S_{\triangle ABF}=S_{\triangle CBF}$,即$\frac{1}{2}AB\cdot FN=\frac{1}{2}BC\cdot FM$,
∴$AB = BC$.
在$\triangle ABF$和$\triangle CBF$中,$\begin{cases}BA = BC\\\angle ABF = \angle CBF\\BF = BF\end{cases}$
∴$\triangle ABF\cong\triangle CBF(SAS)$.
∴$\angle AFB=\angle CFB$.
∵$\angle BFE = 45^{\circ}$,∴$\angle AFB = 135^{\circ}$,
∴$\angle CFB = 135^{\circ}$,∴$\angle CFE=\angle CFB-\angle BFE = 135^{\circ}-45^{\circ}=90^{\circ}$,∴$\angle AFC = 90^{\circ}$.
(3)解:∵$\triangle ABF\cong\triangle CBF$,∴$AF = FC$,$AB = BC$.
∵$\angle AFC=\angle ADC = 90^{\circ}$,$\angle AGF=\angle CGD$,
∴$\angle FAG=\angle FCE$.
在$\triangle AFG$和$\triangle CFE$中,$\begin{cases}\angle AFG = \angle CFE\\AF = CF\\\angle FAG = \angle FCE\end{cases}$
∴$\triangle AFG\cong\triangle CFE(ASA)$.
∴$AG = EC = 4.5$.
∵$BE = 3$,∴$BC = BE + EC = 7.5$.
∴$AB = BC = 7.5$.
