12. (2024·泰兴期中)在平面直角坐标系中,给出如下定义:点$P$到$x$轴、$y$轴的距离的较大值称为点$P$的“长距”,点$Q$到$x$轴、$y$轴的距离相等时,称点$Q$为“完美点”.
(1)点$A(-1,3)$的“长距”为______
3
;
(2)若点$B(4a-1,-3)$是“完美点”,求$a$的值;
解: $\because$ 点$B(4a - 1,-3)$是“完美点”,
$\therefore |4a - 1| = |-3|$,
$\therefore 4a - 1 = 3$或$4a - 1 = -3$,解得$a =$
1
或$a =$
$-\frac{1}{2}$
.
(3)若点$C(-2,3b-2)$的长距为4,且点$C$在第二象限内,点$D$的坐标为$(9-2b,-5)$,试说明:点$D$是“完美点”.
解: $\because$ 点$C(-2,3b - 2)$的长距为 4,且点$C$在第二象限内,
$\therefore 3b - 2 =$
4
,解得$b =$
2
,$\therefore 9 - 2b =$
5
,
$\therefore$ 点$D$的坐标为(
5
,
-5
),
$\therefore$ 点$D$到$x$轴、$y$轴的距离都是 5,$\therefore$ 点$D$是“完美点”.