答案:解:如答图,过点A作$AE⊥x$轴于点E,则$OE = 4,AE = 3$,由勾股定理得$OA=\sqrt {3^{2}+4^{2}}=5.$
当O为顶角顶点时,以点O为圆心,OA长为半径作弧交x轴于点$P_{1},P_{2}$,则$OP_{1}=OP_{2}=OA = 5,$
$\therefore P_{1}(-5,0),P_{2}(5,0).$
当A为顶角顶点时,以点A为圆心,AO长为半径作弧交x轴于点$P_{3}$,则$AP_{3}=AO,\therefore P_{3}E = OE = 4,$
$\therefore OP_{3}=8,P_{3}(8,0).$
当P为顶角顶点时,作OA的垂直平分线交x轴于点$P_{4}$,设$AP_{4}=OP_{4}=x$,则$P_{4}E = 4 - x$,在$Rt△AP_{4}E$中,由勾股定理得$(4 - x)^{2}+3^{2}=x^{2}$,解得$x=\frac {25}{8},$
$\therefore OP_{4}=\frac {25}{8},P_{4}(\frac {25}{8},0).$
综上所述,点P的坐标为$(-5,0)$或$(\frac {25}{8},0)$或$(5,0)$或$(8,0).$