答案:证明:如答图,在AC上截取AF=AE,连接OF.
∵AD平分∠BAC,∴∠EAO=∠FAO,
在△AEO与△AFO中, { AE = AF, ∠EAO = ∠FAO, AO = AO }
∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF.
∵AD,CE分别平分∠BAC,∠ACB,
∴$∠ECA+∠DAC = \frac{1}{2}∠ACB + \frac{1}{2}∠BAC = \frac{1}{2}(∠ACB + ∠BAC) = \frac{1}{2}(180°−∠B) = 60°,$则∠AOC=180°−∠ECA−∠DAC=120°,
∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,
则∠COF=60°,∴∠COD=∠COF,
在△FOC与△DOC中, { ∠COF = ∠COD, CO = CO, ∠FCO = ∠DCO }
∴△FOC≌△DOC(ASA),∴DC=FC,
∵AC=AF+FC,∴AC=AE+CD.