11. (20分)如图,四边形ABCD中,$AB=BC=2CD,AB// CD,∠C=90^{\circ }$,E是BC的中点,AE与BD相交于点F,连接DE.
(1)求证:$△ABE\cong △BCD$;
证明:$ \because AB // CD ,$$ \therefore \angle ABE + \angle C = 180^\circ .$
$ \because \angle C = 90^\circ ,$$ \therefore \angle ABE = 90^\circ = \angle C .$
$ \because E $是 BC 的中点,$ \therefore BC = 2BE ,$
$ \because BC = 2CD ,$$ \therefore BE = CD .$
$ \therefore \triangle ABE \cong \triangle BCD ( \text {
SAS
} ) .$
(2)判断线段AE与BD的数量关系及位置关系,并说明理由;
解:AE
=
BD ,AE
⊥
BD . 理由如下:
由(1)得$ \triangle ABE \cong \triangle BCD ,$
$ \therefore AE = BD ,$$ \angle BAE = \angle CBD ,$
$ \because \angle ABF + \angle CBD = 90^\circ ,$
$ \therefore \angle ABF + \angle BAE = 90^\circ ,$
$ \therefore \angle AFB = 90^\circ ,$$ \therefore AE \perp BD .$
(3)若$CD=1$,试求$△AED$的面积.
解:$ \because \triangle ABE \cong \triangle BCD ,$
$ \therefore BE = CD = 1 ,$ AB = BC = 2CD = 2 ,
$ \therefore CE = BC - BE = 1 ,$
$ \therefore \triangle AED $的面积 = 梯形 ABCD 的面积$ - \triangle ABE $的面积$ -\triangle CDE$的面积$=\frac{1}{2}×(1 + 2)×2-\frac{1}{2}×2×1-\frac{1}{2}×1×1=
\frac{3}{2}
$