(1)证明:$\because AB$是$\odot O$的直径,$\therefore \angle ADB = 90^{\circ},$即$AD\perp BD.$又$\because AB = AC,$$\therefore BD = CD$
(2)解:$\because AB = AC,$$\therefore \angle B = \angle C.$$\because \angle B = \angle E,$$\therefore \angle E = \angle C.$$\therefore CD = DE = 4.$由
(1),知$AD\perp BC.$$\because CD = 4,$$AC = AB = 5,$$\therefore$在$Rt\triangle ACD$中,由勾股定理,得$AD=\sqrt{AC^{2}-CD^{2}}=\sqrt{5^{2}-4^{2}} = 3$