(1) 证明:连接$OD。$
因为半圆$O$与$AB$相切于点$D,$所以$OD\perp AB,$则$\angle ODB = 90^{\circ}。$
在$Rt\triangle OBD$和$Rt\triangle OBC$中,
$\begin{cases}OB = OB\\OD = OC\end{cases}$
所以$Rt\triangle OBD\cong Rt\triangle OBC(HL),$所以$BD = BC。$
(2) 解:因为$OD\perp AB,$所以$\angle ODA = 90^{\circ}。$
因为$OD = OC = 1,$$\angle A = 30^{\circ},$在$Rt\triangle AOD$中,$OA = 2OD = 2。$
根据勾股定理$AD=\sqrt{OA^{2}-OD^{2}}=\sqrt{2^{2}-1^{2}}=\sqrt{3}。$
因为$\angle ACB = 90^{\circ},$$\angle A = 30^{\circ},$所以$\angle ABC = 90^{\circ}-\angle A = 60^{\circ}。$
又因为$Rt\triangle OBD\cong Rt\triangle OBC,$所以$\angle OBD=\angle OBC=\frac{1}{2}\angle ABC = 30^{\circ}。$
在$Rt\triangle OBD$中,$OB = 2OD = 2,$$BD=\sqrt{OB^{2}-OD^{2}}=\sqrt{2^{2}-1^{2}}=\sqrt{3}。$
所以$AB = AD + BD=\sqrt{3}+\sqrt{3}=2\sqrt{3}。$