$(1)证明:∵∠B=∠APD=90°,$
$\ ∴∠BAP+∠APB=90°,∠APB+∠DPC=90°\ $
$∴∠BAP=∠DPC\ $
$在△BAP和△CPD中\ $
${{\begin{cases} {∠B=∠C } \\ {∠BAP=∠CPD } \\ {PA=PD} \end{cases}}}\ $
$∴△BAP≌△CPD(\mathrm {AAS})\ $
$∴BP=CD,AB=PC\ $
$∴BC=BP+PC=AB+CD\ $
$(2)解:如图,过点A作AE⊥BC于E,过点D作$
$DF⊥BC于F$
$由(1)可知,EF=AE+DF$
$∵∠B=∠C=45°,AE⊥BC,DF⊥BC$
$∴∠B=∠BAE=45°,∠C=∠CDF=45°$
$∴BE=AE,CF=DF$
$AB=\sqrt{2}AE$
$CD=\sqrt{2}DF$
$∴BC=BE+EF+CF=2 (AE+DF)$
$∴\frac {AB+CD}{BC}=\frac {\sqrt{2}(AE+DF)}{2(AE+DF)}=\frac {\sqrt{2}}{2}$