电子课本网 第109页

第109页

信息发布者:
$解:矩形的另外一条边长为​2\sqrt {6}÷\sqrt {2}=2\sqrt {3}\mathrm {cm}​$
$ 对角线的长为​\sqrt {(\sqrt {2})²+(2\sqrt {3})²}=\sqrt {14}\mathrm {cm}​$
$ \sqrt{3}$
$ \frac{\sqrt{5}}{5}$
$解:(2)①原式=\frac {2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$
$=\sqrt{5}-\sqrt{3}$
$②原式=\frac {5-3}{\sqrt{5}+\sqrt{3}}$
$=\frac {(\sqrt{5})²-(\sqrt{3})²}{\sqrt{5}+\sqrt{3}}$
$=\frac {(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$
$=\sqrt{5}-\sqrt{3}$
$(3)原式=2(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2n+1}-\sqrt{2n-1})$
$=2(\sqrt{2n+1}-1)$
$​ \frac {\sqrt {3}}{3}​$
$\sqrt{6}$
$​ \frac {\sqrt {2}}{2}​$
$ \frac{\sqrt{6}}{2}$
$\frac{\sqrt{6}}{3}$
$\frac{\sqrt{6}}{6}$