$解:(2)①原式=\frac {2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$
$=\sqrt{5}-\sqrt{3}$
$②原式=\frac {5-3}{\sqrt{5}+\sqrt{3}}$
$=\frac {(\sqrt{5})²-(\sqrt{3})²}{\sqrt{5}+\sqrt{3}}$
$=\frac {(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$
$=\sqrt{5}-\sqrt{3}$
$(3)原式=2(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2n+1}-\sqrt{2n-1})$
$=2(\sqrt{2n+1}-1)$