$解:(1)在Rt△ABC中,∵AC=2,BC=3,∠C=90°$
$∴AB=\sqrt {AC^2+BC^2}=\sqrt {13}$
$∴sinA=\frac {BC}{AB}=\frac 3{\sqrt {13}}=\frac {3\sqrt {13}}3,cosA=\frac {AC}{AB}=\frac 2{\sqrt {13}}=\frac {2\sqrt {13}}{13}$
$(2)不妨设BC=1,则AB=\sqrt 3$
$在Rt△ABC中,∵BC=1,AB=\sqrt 3,∠C=90°$
$∴AC=\sqrt {AB^2-BC^2}=\sqrt 2$
$∴sinA=\frac {BC}{AB}=\frac 1{\sqrt 3}=\frac {\sqrt 3}3,cos A=\frac {AC}{AB}=\frac {\sqrt 2}{\sqrt 3}=\frac {\sqrt 6}3$
$(3)tan B=\frac {AC}{BC}=\frac 35$
$不妨设AC=3x,则BC=5x$
$在Rt△ABC中,∵AC=3x,BC=5x$
$∴AB=\sqrt {AC^2+BC^2}=\sqrt {34}x$
$∴sinA=\frac {BC}{AB}=\frac {5x}{\sqrt {34}x}=\frac {5\sqrt {34}}{34},cosA=\frac {AC}{AB}=\frac {3x}{\sqrt {34}x}=\frac {3\sqrt {34}}{34}$